
Learning and Adaptation

The most impressive characteristic of the human brain is to learn, hence
the same feature is acquired by ANN.

What Is Learning in ANN?

Basically, learning means to do and adapt the change in itself as and when
there is a change in environment. ANN is a complex system or more
precisely we can say that it is a complex adaptive system, which can change
its internal structure based on the information passing through it.

Why Is It important?

Being a complex adaptive system, learning in ANN implies that a processing
unit is capable of changing its input/output behavior due to the change in
environment. The importance of learning in ANN increases because of the
fixed activation function as well as the input/output vector, when a particular
network is constructed. Now to change the input/output behavior, we need
to adjust the weights.

Neural Network Learning Rules

We know that, during ANN learning, to change the input/output behavior,
we need to adjust the weights. Hence, a method is required with the help of
which the weights can be modified. These methods are called Learning
rules, which are simply algorithms or equations. Following are some
learning rules for the neural network −

1- Hebbian Learning Rule
2- Perceptron Learning Rule
3- Delta Learning Rule
4- Competitive Learning Rule
5- Outstar Learning Rule

Hebbian Learning Rule

This rule, one of the oldest and simplest, was introduced by Donald Hebb in his book The
Organization of Behavior in 1949. It is a kind of feed-forward, unsupervised learning

It is one of the first and also easiest learning rules in the neural network. It is
used for pattern classification. It is a single layer neural network, i.e. it has one
input layer and one output layer. The input layer can have many units, say n.
The output layer only has one unit. Hebbian rule works by updating the weights
between neurons in the neural network for each training sample

Hebbian Learning Rule Algorithm :

1- Set all weights to zero, wi = 0 for i=1 to n, and bias to zero.
2- For each input vector, S(input vector) : t(target output pair), repeat steps 3-

5.
3- Set activations for input units with the input vector Xi = Si for i = 1 to n.
4- Set the corresponding output value to the output neuron, i.e. y = t.
5- Update weight and bias by applying Hebb rule for all i = 1 to n:

Implementing AND Gate:

we have used ‘-1' instead of ‘0’ this is because the Hebb network uses bipolar data and not binary data
because the product item in the above equations would give the output as 0 which leads to a wrong
calculation.

