Chapter 6: Part-2 CPU Scheduling

Silberschatz, Galvin and Gagne ©2013

Chapter 6: CPU Scheduling

- Basic Concepts
- Scheduling Criteria
- Scheduling Algorithms
- Thread Scheduling
- Multiple-Processor Scheduling
- Real-Time CPU Scheduling
- Operating Systems Examples
- Algorithm Evaluation

Objectives

- To introduce CPU scheduling, which is the basis for multiprogrammed operating systems
- To describe various CPU-scheduling algorithms
- To discuss evaluation criteria for selecting a CPU-scheduling algorithm for a particular system
- To examine the scheduling algorithms of several operating systems

- Can only estimate the length should be similar to the previous one
 - Then pick process with shortest predicted next CPU burst
- Can be done by using the length of previous CPU bursts, using exponential averaging
 - 1. t_n = actual length of n^{th} CPU burst
 - 2. τ_{n+1} = predicted value for the next CPU burst
 - 3. α , $0 \le \alpha \le 1$
 - 4. Define: $\tau_{n=1} = \alpha t_n + (1-\alpha)\tau_n$.
- Commonly, α set to $\frac{1}{2}$
- Preemptive version called shortest-remaining-time-first

Prediction of the Length of the Next CPU Burst

Examples of Exponential Averaging

- α =0
 - $\tau_{n+1} = \tau_n$
 - Recent history does not count
- **α =1**
 - $\tau_{n+1} = \alpha t_n$
 - Only the actual last CPU burst counts
- If we expand the formula, we get:

$$\begin{aligned} \tau_{n+1} &= \alpha \, t_n + (1 - \alpha) \alpha \, t_{n-1} + \dots \\ &+ (1 - \alpha)^j \alpha \, t_{n-j} + \dots \\ &+ (1 - \alpha)^{n+1} \, \tau_0 \end{aligned}$$

Since both α and $(1 - \alpha)$ are less than or equal to 1, each successive term has less weight than its predecessor

Now we add the concepts of varying arrival times and preemption to the analysis

Process	<u>Arrival Time</u>	<u>Burst Time</u>
P_1	0	8
P_2	1	4
P_3	2	9
P_4	3	5

Preemptive SJF Gantt Chart

	P ₁	P ₂	P ₄	P ₁	P ₃	
0		1 :	5 1	0 1	7 20	6

Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4 = 26/4 = 6.5 msec

Another Solution :

<u>Process</u>	<u>Arrival Time</u>	Burst Time
P1	0	876543210
P2	1	43210
P3	2	9876543210
P4	3	543210

Operating System Concepts – 9th Edition

Silberschatz, Galvin and Gagne ©2013

Find below

- Turn-Around Time (TAT) = Complete Time (CT) Arrival Time (AT)
- WT = Turn-Around Time (TAT) Burst Time (BT)
- Response Time (RT) = Start Time (ST) Arrival Time (AT)

Process	Complete Time	Turn Around Time	Waiting Time	<u>Response Time</u>
P1	17	17-0 = 17	17-8 = 9	0 - 0 = 0
P2	5	5-1 = 4	4 -4 = 0	1-1 =0
Р3	26	26-2 = 24	24-9 =15	18 – 2 =16
P4	10	10-3 =7	7-5 = 2	6 -3 = 3

- Average Waiting Time = $(9+0+15+2)/4 \rightarrow 26/4 = 6.5$
- Average Turn-Around Time (TAT) = (17+4+24+7) / 4 = 13

Another Example:

Process	<u>Arrival Time</u>	Burst Time
P1	0	876543210
P2	1	43210
Р3	2	210
P4	3	10
Р5	4	3 2 1 0
P6	5	210

P1	P2	P3	P3	P4	P6	P6	P2	P2	P2	P5	P1	P5	P1							
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

Example of Shortest-Remaining-Time-First

Find below

- Turn-Around Time (TAT) = Complete Time (CT) Arrival Time (AT)
- WT = Turn-Around Time (TAT) Burst Time (BT)
- Response Time (RT) = Start Time (ST) Arrival Time (AT)

Process	Complete Time	Turn Around Time	Waiting Time	<u>Response Time</u>
P1	20	20	12	0
P2	10	9	5	0
Р3	4	2	0	0
P4	5	2	1	1
Р5	13	9	6	6
P6	7	2	0	0

Average Waiting Time = (12+5+0+1+6+0)/6 → 24 / 6 = 4

Average Turn-Around Time (TAT) = (20+9+2+2+9+2) / 4 → 44/4 = 11

Find the average waiting time according to the SRTF (preemptive SJF) scheduling algorithm?

<u>Process</u>	Arrival Time	Burst Time
P1	0	11
P2	1	9
P3	2	7
P4	3	5
P5	4	8

Consider the following set of process with the length of CPU burst cycle given in milliseconds:

Find the average waiting time according to the SRTF (preemptive SJF) scheduling algorithm?

Process	Arrival Time	Burst Time
P1	0	12
P2	3	8
P3	5	4
P4	10	10
P5	12	6

Consider the following set of process with the length of CPU burst cycle given in milliseconds:

Operating System Concepts – 9th Edition

Silberschatz, Galvin and Gagne ©2013

CPU Scheduling

Priority Scheduling

Dhafer Sabah Yaseen

Operating System Concepts – 9th Edition

han you