Chapter 6: Part-2 CPU Scheduling

Chapter 6: CPU Scheduling

- Basic Concepts
- Scheduling Criteria
- Scheduling Algorithms
- Thread Scheduling
- Multiple-Processor Scheduling
- Real-Time CPU Scheduling
- Operating Systems Examples
- Algorithm Evaluation

Objectives

- To introduce CPU scheduling, which is the basis for multiprogrammed operating systems
- To describe various CPU-scheduling algorithms
- To discuss evaluation criteria for selecting a CPU-scheduling algorithm for a particular system
- To examine the scheduling algorithms of several operating systems

Determining Length of Next CPU Burst

- Can only estimate the length - should be similar to the previous one
- Then pick process with shortest predicted next CPU burst
- Can be done by using the length of previous CPU bursts, using exponential averaging

1. $t_{n}=$ actual length of $n^{\text {th }} \mathrm{CPU}$ burst
2. $\tau_{n+1}=$ predicted value for the next CPU burst
3. $\alpha, 0 \leq \alpha \leq 1$
4. Define: $\quad \tau_{n=1}=\alpha t_{n}+(1-\alpha) \tau_{n}$.

- Commonly, α set to $1 / 2$
- Preemptive version called shortest-remaining-time-first

Prediction of the Length of the Next CPU Burst

CPU burst $\left(t_{i}\right)$	6	4	6	4	13	13	13	\ldots
"guess" $\left(\tau_{i}\right)$	10	8	6	6	5	9	11	12
\ldots								

Examples of Exponential Averaging

- $\alpha=0$
- $\tau_{n+1}=\tau_{n}$
- Recent history does not count
- $\alpha=1$
- $\tau_{n+1}=\alpha t_{n}$
- Only the actual last CPU burst counts
- If we expand the formula, we get:

$$
\begin{aligned}
\tau_{n+1}=\alpha & t_{n}+(1-\alpha) \alpha t_{n-1}+\ldots \\
& +(1-\alpha)^{\prime} \alpha t_{n-j}+\ldots \\
& +(1-\alpha)^{n+1} \tau_{0}
\end{aligned}
$$

- Since both α and ($1-\alpha$) are less than or equal to 1 , each successive term has less weight than its predecessor

Example of Shortest-Remaining-Time-First

- Now we add the concepts of varying arrival times and preemption to the analysis

Process		Arriva/Time		Burst Time
		0		8
P_{1}		1		
P_{2}				4
P_{3}		2		9
P_{4}		3		5

- Preemptive SJF Gantt Chart

P_{1}	P_{2}	P_{4}	P_{1}	P_{3}
0	5	10	26	

- Average waiting time $=[(10-1)+(1-1)+(17-2)+5-3)] / 4=26 / 4=6.5$ msec

Example of Shortest-Remaining-Time-First

Another Solution :

Process	Arrival Time	Burst Time
P1	0	876543210
P2	1	43210
P3	2	9876543210
P4	3	543210

Example of Shortest-Remaining-Time-First

Find below

- Turn-Around Time (TAT) = Complete Time (CT) - Arrival Time (AT)
- WT = Turn-Around Time (TAT) - Burst Time (BT)
- Response Time (RT) = Start Time (ST) - Arrival Time (AT)

Process	Complete Time	Turn Around Time	Waiting Time	Response Time
P1	17	$17-0=17$	$17-8=9$	$0-0=0$
P2	5	$5-1=4$	$4-4=0$	1-1 =0
P3	26	$26-2=24$	$24-9=15$	$18-2=16$
P4	10	$10-3=7$	$7-5=2$	$6-3=3$

- Average Waiting Time $=(9+0+15+2) / 4 \rightarrow 26 / 4=6.5$
- Average Turn-Around Time (TAT) $=(17+4+24+7) / 4=13$

Example of Shortest-Remaining-Time-First

Another Example:

Process	Arrival Time	Burst Time
P1	0	876543210
P2	1	43210
P3	2	210
P4	3	10
P5	4	3210
P6	5	210

P1	P2	P3	P3	P4	P6	P6	P2	P2	P2	P5	P1	P5	P1							
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

Example of Shortest-Remaining-Time-First

Find below

- Turn-Around Time (TAT) = Complete Time (CT) - Arrival Time (AT)
- WT = Turn-Around Time (TAT) - Burst Time (BT)
- Response Time (RT) = Start Time (ST) - Arrival Time (AT)

Process	Complete Time		Turn Around Time	
P1	Waiting Time		Response Time	
P1	20	20	12	0
P2	10	9	5	0
P3	4	2	0	0
P4	5	2	1	1
P5	13	9	6	6
P6	7	2	0	0

- Average Waiting Time $=(12+5+0+1+6+0) / 6 \rightarrow 24 / 6=4$
- Average Turn-Around Time $($ TAT $)=(20+9+2+2+9+2) / 4 \rightarrow 44 / 4=11$

HW of Shortest-Remaining-Time-First

- Find the average waiting time according to the SRTF (preemptive SJF) scheduling algorithm?

Process	Arrival Time	Burst Time
P1	0	11
P2	1	9
P3	2	7
P4	3	5
P5	4	8

- Consider the following set of process with the length of CPU burst cycle given in milliseconds:

HW of Shortest-Remaining-Time-First

- Find the average waiting time according to the SRTF (preemptive SJF) scheduling algorithm?

Process	Arrival Time	Burst Time
P1	0	12
P2	3	8
P3	5	4
P4	10	10
P5	12	6

■ Consider the following set of process with the length of CPU burst cycle given in milliseconds:

NEXT

CPU Scheduling

Priority Scheduling

Dhafer סabah Yaseen

