
 LEC11 OOP 2018-2019

1

Inheritance in OOP – Java

Inheritance is a mechanism in which one class acquires (يكتسب) the property of

another class. For example, a child inherits the traits (سمات) of his/her parents.

Inheritance is an important pillar (دعامة) and the most powerful mechanisms of

OOP. The inheritance mechanism is allowing a class to inherit the features (fields

and methods) of another class.

Inheritance represents the IS-A relationship, also known as parent-child

relationship.

 It allows the reuse of the members of a class (called the superclass or the mother

class) in another class (called subclass, child class or the derived class) that

inherits from it. Below three visual examples of inheritance from Real World.

 LEC11 OOP 2018-2019

2

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjcg8-NqrPfAhWGDuwKHfl3CjgQjRx6BAgBEAU&url=http://www.java67.com/2012/08/what-is-inheritance-in-java-oops-programming-example.html&psig=AOvVaw3Brygg2uyaecU-3cqUfYPV&ust=1545564335898825
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwj2kZDRqrPfAhUJ3qQKHetUA4gQjRx6BAgBEAU&url=https://www.slideshare.net/NadeeshaThilakarathn/object-oriented-programming-54371671&psig=AOvVaw2aFKAldwikHQYqf6gNqXvV&ust=1545564512352260

 LEC11 OOP 2018-2019

3

Important terminology:

• Super Class: The class whose features are inherited is known as super

class(or a base class or a parent class).

• Sub Class: The class that inherits the other class is known as sub class(or a

derived class, extended class, or child class). The subclass can add its own

fields and methods in addition to the superclass fields and methods.

• Reusability: Inheritance supports the concept of “reusability”, i.e. when we

want to create a new class and there is already a class that includes some of

the code that we want, we can derive our new class from the existing class.

By doing this, we are reusing the fields and methods of the existing class.

The keyword used for inheritance is extends. The syntax of inheritance in Java

language is:

class derived-class extends base-class {

 //methods and fields

}

Types of Inheritance in Java

Below are the different types of inheritance which is supported by Java.

1. Single Inheritance : In single inheritance, subclasses inherit the features of

one superclass. In image below, the class A serves as a base class for the

derived class B.

 LEC11 OOP 2018-2019

4

2. Multilevel Inheritance: In Multilevel Inheritance, a derived class will be

inheriting a base class and as well as the derived class also act as the base class

to other class. In below image, the class A serves as a base class for the derived

class B, which in turn serves as a base class for the derived class C. In Java, a

class cannot directly access the grandparent’s members.

3. Hierarchical Inheritance: In Hierarchical Inheritance, one class serves as a

superclass (base class) for more than one sub class.In below image, the class

A serves as a base class for the derived class B,C and D.

https://www.geeksforgeeks.org/g-fact-91/
https://contribute.geeksforgeeks.org/wp-content/uploads/inheritance3.png
https://cdncontribute.geeksforgeeks.org/wp-content/uploads/inheritance4.png

 LEC11 OOP 2018-2019

5

4. Multiple Inheritance (Through Interfaces): In Multiple inheritance ,one

class can have more than one superclass and inherit features from all parent

classes. Please note that Java does not support multiple inheritance with

classes. In java, we can achieve multiple inheritance only through Interfaces.

In image below, Class C is derived from interface A and B.

5. Hybrid Inheritance (Through Interfaces) : It is a mix of two or more of the

above types of inheritance. Since java doesn’t support multiple inheritance

with classes, the hybrid inheritance is also not possible with classes. In java,

we can achieve hybrid inheritance only through Interfaces.

https://www.geeksforgeeks.org/java-and-multiple-inheritance/
https://www.geeksforgeeks.org/java-and-multiple-inheritance/
http://quiz.geeksforgeeks.org/interfaces-in-java/
http://quiz.geeksforgeeks.org/interfaces-in-java/
https://cdncontribute.geeksforgeeks.org/wp-content/uploads/inheritance2-1.png
https://cdncontribute.geeksforgeeks.org/wp-content/uploads/inheritance-1.png

 LEC11 OOP 2018-2019

6

Important facts about inheritance in Java

• Default superclass: Except Object class, which has no superclass, every class

has one and only one direct superclass (single inheritance). In the absence of

any other explicit superclass, every class is implicitly a subclass of Object

class.

• Superclass can only be one: A superclass can have any number of subclasses.

But a subclass can have only one superclass. This is because Java does not

support multiple inheritance with classes. Although with interfaces, multiple

inheritance is supported by java.

• Inheriting Constructors: A subclass inherits all the members (fields,

methods, and nested classes) from its superclass. Constructors are not

members, so they are not inherited by subclasses, but the constructor of the

superclass can be invoked (تستدعى)from the subclass.

• Private member inheritance: A subclass does not inherit the private

members of its parent class. However, if the superclass has public or protected

methods (like get and set) for accessing its private fields, these can also be

used by the subclass.

Controlling Access to Members of a Class

Access level modifiers determine whether other classes can use a particular field

or invoke a particular method. There are two levels of access control:

• At the top level—public, or package-private (no explicit modifier).

• At the member level—public, private, protected, or package-private (no

explicit modifier).

https://www.geeksforgeeks.org/object-class-in-java/
https://www.geeksforgeeks.org/object-class-in-java/
https://www.geeksforgeeks.org/java-and-multiple-inheritance/

 LEC11 OOP 2018-2019

7

Example1 (Trace)

class Teacher {

 public String designation = "Teacher";

 public String collegeName = "Beginners book";

 public void does(){

 System.out.println("Teaching"); } }

public class PhysicsTeacher extends Teacher{

 public String mainSubject = "Physics";}

public class Main{

 public static void main(String args[]){

 PhysicsTeacher obj = new PhysicsTeacher();

 System.out.println(obj.collegeName); System.out.println(obj.designation);

 System.out.println(obj.mainSubject); obj.does(); }}

Output:
Beginners book

Teacher

Physics

Teaching

We are going to suppose that we want to declare a series of classes that

describe polygons like our CRectangle, or CTriangle. They have certain

common features, such as both can be described by means of only two sides:

height and base. This could be represented in the world of classes with a class

CPolygon from which we would derive the two referred ones, CRectangle and

CTriangle.

 Base class / super class

 Derived classes

The class CPolygon would contain members that are common for all

polygons. In our case: width and height. And CRectangle and CTriangle would

be its derived classes.

 LEC11 OOP 2018-2019

8

Example (Writing a program)

Define a base class called polygon. Use it to store two integer type values

by method set values ; that could be used to compute the area of figure. Derive two

specific classes called triangle and rectangle from the base polygon. Add to derived

class a member function area () to compute the area of figures.

package javaapplication45;

public class Polygon {

 protected int width, height;

 public void set_values (int a, int b)

 { width=a; height=b;}

 }

package javaapplication45;

public class Rectangle extends Polygon{

 public int area (){

 return (width * height); } }

package javaapplication45;

public class Triangle extends Polygon {

 public int area (){

 return (width * height / 2); } }

package javaapplication45;

 public class Main {

 public static void main(String[] args) {

 Rectangle rect=new Rectangle();

 Triangle trg=new Triangle();

 rect.set_values (4,5);

 trg.set_values (4,5);

 System.out.println(rect.area());

 System.out.println(trg.area()); }}

 The output :

20

10

 LEC11 OOP 2018-2019

9

As you may see, objects of classes Rectangle and Triangle each contain

members of Polygon, that are: width, height and set_values().

The protected specifier is similar to private, its only difference occurs when

deriving classes. When we derive a class, protected members of the base class can

be used by other members of the derived class, nevertheless private member

cannot.

Since we wanted width and height to have the ability to be manipulated by

members of the derived classes Rectangle and Triangle and not only by members

of Polygon, we have used protected access instead of private.

