
 LEC13 OOP 2018-2019 

 

1 
 

Constructors in Subclasses 
constructor of sub class is invoked when we create the object of subclass, 

it by default invokes the default constructor of super class (that has no 

parameters). Hence, in inheritance the objects are constructed top-down. The 

superclass constructor can be called explicitly using the super keyword, but it 

should be first statement in a constructor. The super keyword refers to the 

superclass, immediately above of the calling class in the hierarchy. The use of 

multiple super keywords to access an ancestor class other than the direct parent is 

not permitted. The super keyword should be used when we need to call a 

constructor with parameters. 

 
1. Constructors are not inherited. That is, if you extend an existing class to 

make a subclass, the constructors in the superclass do not become a part of 

the subclass.  
 

2. If you want constructors in the subclass, you have to define new ones.  
 

 
3. If you don’t define any constructors in the subclass, then the computer will 

make up a default constructor, with no parameters, for you. This could be a 

problem, if there is a constructor in the superclass that does a lot of 

necessary work. It looks like you might have to repeat all that work in the 

subclass!  
4. The constructor of the super class could be called by involves the special 

variable, super. 
 

5.  At the beginning statement in a constructor, we should use super to call a 

constructor from the superclass. The notation for this is a bit ugly and 

misleading, and it can only be used in this one particular circumstance: It 

looks like you are calling super as a method (even though super is not a 

method and you can’t call constructors the same way you call other 

methods anyway).  

 

 

 

 

 

 

 

 

 

https://beginnersbook.com/2013/03/constructors-in-java/
https://beginnersbook.com/2014/07/super-keyword-in-java-with-example/


 LEC13 OOP 2018-2019 

 

2 
 

Example 1 (Trace) 

1- Case 1 

 
package javaapplication55; 

public class One { 

    public One(){ 

        System.out.println("One");} 

    public One(int a){ 

        System.out.println("One with parameter");} 

    } 

 

package javaapplication55; 

public class Two extends One{ 

    public Two(){ 

        super(); // optional  

        System.out.println("Two");} 

public Two(int a){ 

      super(); //optional 

    System.out.println("Two parameter"); }  } 

 

The output will be: 

One 

Two 

One 

Two parameter 

 

2-  Case 2 

 

package javaapplication55; 

public class Two extends One{ 

    public Two(){ 

        super(4); 

        System.out.println("Two");} 

public Two(int a){ 

      super(5);        System.out.println("Two parameter");}  } 

 

The output will be: 

 

One with parameter 

Two 

One with parameter 

Two parameter 

3- Case 3 



 LEC13 OOP 2018-2019 

 

3 
 

package javaapplication55; 

public class One { 

    public One(){ 

        System.out.println("One");} 

    public One(int a){ 

        System.out.println("One with parameter");} 

    } 

public class Two extends One{ 

    public Two(){ 

     System.out.println("Two");} 

     

public Two(int a){ 

      

    System.out.println("Two parameter"); 

} } 

 

public class JavaApplication55 { 

public static void main(String[] args) { 

       

        Two t1=new Two(); 

        Two t2=new Two(6);         

     

}} 

 

The output will be: 

 

Two 

Two parameter 

 

 
 
 
 
 
 
 
 
 
 
 
 
 



 LEC13 OOP 2018-2019 

 

4 
 

Example2 (trace) 

public class One  { 

     protected int x,y; 

     public One(int a,int b){ 

         x=a;y=b; 

     System.out.println("One"+x+"   "+y);} 

     public One)( { 

         System.out.println("One One");}    } 

 

public class Two extends One{ 

    public Two(){ 

               System.out.println("Two");} } 

     

public class Main  { 

    public static void main(String[] args){ 

    Two t=new Two ( );  } } 

 

The output will be : 

One One 

Two 

 

Case 1:  

  If we delete the empty constructor of the One class ….the compiler will    

detect an error …….why?  

 

Case 2: 

If we delete both constructors what will happen? Why? 

 

Case3: 

 If we delete the One(int , int) constructor what will be the output ? why? 
 

Case4:  

If we call the super constructor as shown: 

 

public class Two extends One { 

    public Two(){ 

               super (3,4); 

               System.out.println("Two");}} 

 

The output will be: 

One 3   4 

Two 

 



 LEC13 OOP 2018-2019 

 

5 
 

 

The statement “super (3,4);” calls the constructor from the superclass. 

This call must be the first line of the constructor in the subclass. Note that if 

you don’t explicitly (واضح) call a constructor from the superclass in this way, 

then the constructor from the superclass, the one with no parameters, will be 

called automatically. If there is no constructor with no parameters … the 

compiler will detect error. Repeat the same cases which discussed previously 

but with calling super(3,4)…and compare the results of these three cases. 

 
Example2 (Writing a program) 

 

Emergency contacts 

 

Crisis alert systems are all the rage these days. When an emergency 

manifests itself, all folks who have registered with the emergency contact 

database are notified via email, phone, text message , etc. We can use the 

concepts of inheritance to reduce the system's complexity and allow for future 

ways of contacting individuals.  

First, we model the general Contact. All contacts should have a name, but 

the particular way in which they are contacted depends upon their preferred 

method of communication. We will leave it for the subclasses of Contact to 

decide how to implement the notify method.  

 

public class Contact { 

   private String firstName; 

   private String lastName; 

 

   public Contact(String givenFirstName, 

    String givenLastName) { 

      firstName = givenFirstName; 

      lastName = givenLastName;   } 

 

   public String getName() { 

      return (firstName + " " + lastName);   }} 

 

 

 

 

 

 

 

 

 

http://www.isualert.iastate.edu/


 LEC13 OOP 2018-2019 

 

6 
 

Defining a subclass using the extends keyword 

     Now, let's make an EmailContact which is a subclass of Contact that is 

specialized for email notification. In order to define a subclass of any other class, 

we have to use an extends clause:  

 

public class EmailContact extends Contact { 

   private String emailAddress; 

 

public EmailContact(String givenFirstName, String givenLastName, 

                       String givenEmailAddress)   { 

      // first, we call the superclass constructor to initialize the 

      // "inherited" instance variables 

      super(givenFirstName, givenLastName); 

   

      // then, initialize everything that is special for EmailContact 

      emailAddress = givenEmailAddress; 

   } 

 

   public void notify(String alertMessage)  

   { 

      // send an email to the address 

      System.out.println("Esteemed " + getName() + ","); 

      System.out.println(alertMessage); 

   } 

} 

public class EmergencyTester {  

public static void main(String[] args) { 

EmailContact ec=new EmailContact("Yasser","Mohammed","iraq@gmail.com"); 

ec.notify("FIRE near School HIGH"); 

 

   } 

} 

 
The output will be: 

 

Esteemed Yasser Mohammed, 

FIRE near School HIGH 

 
 
 
 
 



 LEC13 OOP 2018-2019 

 

7 
 

Example LAB : 
 

The following figure is a class hierarchy of shapes. Shape is a generalized 

class of Circle and Square. All shapes have a name and a measurement by which 

the area of the shape is calculated. The attribute name and method getName() are 

defined as properties of Shape. Circle and Square, being subclasses of Shape, 

inherit these properties (highlighted in bold in the following figure).use 

constructors to set the values of  attributes. 
 

 
public class Shape { 

private String name; 

public Shape(String aName) {name=aName;} 

public String getName() {return name;}  } 

 

public class Circle extends Shape{ 

private int redius; 

Circle(String aName) { 

super(aName); 

radius = 3; } 

public double calculateArea() { 

  return (3.14 * radius * radius); 

class Square extends Shape { 

private int side; 

Square(String aName) { 

super(aName); 

side = 3; } 

public double calculateArea() { 

return (side*side); 

} } 

 

Complete the program and execute it in the Lab  


