
 LEC14 OOP 2018-2019

1

 There can be a lot of usage of java this keyword. In java, this is a reference

variable that refers to the current object.

 LEC14 OOP 2018-2019

2

1- Using this with a Field

The most common reason for using this keyword is because a field is shadowed

by a method or constructor parameter.

https://www.google.co.uz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwjRpLHGpungAhULGuwKHaRnBP8QjRx6BAgBEAU&url=https%3A%2F%2Fwww.guru99.com%2Fjava-this-keyword.html&psig=AOvVaw1JlWTABYz-EWaRnGuLm6Sn&ust=1551816851549797

 LEC14 OOP 2018-2019

3

https://www.google.co.uz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjvqKb2pungAhVQsaQKHd_AAwIQjRx6BAgBEAU&url=https%3A%2F%2Fwww.guru99.com%2Fjava-this-keyword.html&psig=AOvVaw1JlWTABYz-EWaRnGuLm6Sn&ust=1551816851549797

 LEC14 OOP 2018-2019

4

For example, the Point class was written like this:

Example1 (Trace):

public class Point {

public int x = 0;

public int y = 0;

public Point(int a, int b) {

 x = a; y = b; }}

but it could have been written like this:

public class Point {

 public int x = 0;

 public int y = 0;

 public Point(int x, int y) {

 this.x = x; this.y = y;

 }}

Each argument to the constructor shadows one of the object's fields — inside

the constructor x is a local copy of the constructor's first argument. To refer to the

Point field x, the constructor must use this.x.

Example2 (Trace):

public class Account{

private int a; int b;

public void set(int a ,int b){

a = a;

b = b; }

public void show(){

System.out.println("Value of A ="+a); System.out.println("Value of B ="+b); }

}

public class Main{

public static void main(String args[]){

Account obj = new Account();

obj.set(2,3);

obj.show(); } }

 LEC14 OOP 2018-2019

5

Example3 (Trace):

Replae the set method within the previous program to :

public void set(int a ,int b){

this. a = a;

this.b = b; }

Example4 (Trace):

Replae the set method within the previous program to :

public void set(int x ,int y){

this. a = x;

this.b = y; }

Example5 (Trace):

Replae the set method within the previous program to :

public void set(int x ,int y){

a = x;

b = y; }

2- Using this with a Constructor

From within a constructor, you can also use the this keyword to call another

constructor in the same class. Doing so is called an explicit constructor

invocation. Here's another Rectangle class, with a different implementation from

the one in the Objects section.

Example6 (Trace):

public class Rectangle {

 private int x, y;

 private int width, height;

 public Rectangle() { this(0, 0, 1, 1); }

 public Rectangle(int width, int height) { this(0, 0, width, height); }

 public Rectangle(int x, int y, int width, int height) {

 this.x = x;

 this.y = y;

 this.width = width;

 this.height = height; }

 ... } }

https://docs.oracle.com/javase/tutorial/java/javaOO/objects.html

 LEC14 OOP 2018-2019

6

This class contains a set of constructors. Each constructor initializes some or

all of the rectangle's member variables. The constructors provide a default value

for any member variable whose initial value is not provided by an argument. For

example, the no-argument constructor creates a 1x1 Rectangle at coordinates 0,0.

The two-argument constructor calls the four-argument constructor, passing in the

width and height but always using the 0,0 coordinates. As before, the compiler

determines which constructor to call, based on the number and the type of

arguments.

3- Shadowed and hided Variables

One variable shadows another if they have the same name and are accessible

in the same place.

Example7 (Trace):

public class One {

 private int x = 1000;

 public void set(){

 int x;

 x=100;

 System.out.println(x);

 System.out.println(((One)this).x);

((One)this).x=2000;

 System.out.println(((One)this).x);

} }

public class JavaMain {

public static void main(String[] args) {

 One obj=new One();

 obj.set();

 }}

The output is:

100

1000

2000

 LEC14 OOP 2018-2019

7

What happens if an inherited variable has the same name as a variable of

the subclass? The variable of the subclass is said to hide (sometimes called

shadow) the inherited variable with the same name. The inherited variable is

visible in the subclass, yet it cannot be accessed by the same name.

We can said that a field is said to hide all fields with the same name in super

classes.

But what if you need to use the inherited variable in the subclass; how can

it be accessed? The answer is to use the reserved word super.

For example, if class B is a subclass of class A, and both contain a variable

named x as follows.

Example8(Trace):

class A {

protected int x; ………………. }

class B extends A {

// hide (shadow) the inherited variable common from class A

protected int x;

…………………………… }

Then in class B, the variable common may be referred to by either x or this.x.

However, the inherited variable common is referred to by super.x or by

((A)this).x. Notice that the keyword this may be cast to refer to the appropriate

class, in this case class A. This technique is useful if you want to refer to a

variable in a class beyond (وراء) the immediate superclass higher up the class

hierarchy. Although you may refer to shadowed variables by casting an object to

the appropriate type, this technique cannot be used to refer to overridden

methods.

The Special Variable super ,Java also defines another special variable, named

“super”, for use in the definitions of instance methods (methods within a

class). The variable super is for use in a subclass. Like "this", super refers to

the object that contains the method. But it’s forgetful. It forgets that the object

belongs to the class you are writing, and it remembers only that it belongs to

the superclass of that class. The point is that the class can contain additions

and modifications to the superclass. "super" doesn’t know about any of those

additions and modifications; it can only be used to refer to methods and

variables in the superclass.

 LEC14 OOP 2018-2019

8

Example9 (Trace):

 public class One {

 protected int x ;

 public void set(){

 x=1000;

 System.out.println(x);

 System.out.println(this.x);} }

public class Two extends One {

 private int x ;

 public void print(){

 set();

 x=2000;

 System.out.println(this.x);

 System.out.println(x);

 System.out.println(((One)this).x);

 System.out.println(super.x);

 super.x=10;

 this.x=20;

 System.out.println(this.x);

 System.out.println(x);

 System.out.println(((One)this).x);

 System.out.println(super.x);

 ((One)this).x=30;

 x=40;

 System.out.println(((One)this).x);

 System.out.println(super.x);

 System.out.println(this.x);

 System.out.println(x); } }

public class Main {

 public static void main(String[] args) {

 Two obj=new Two();

 obj.print(); } }

 LEC14 OOP 2018-2019

9

The output will be:

1000

1000

2000

2000

1000

1000

20

20

10

10

30

30

40

40

4- Overriding Method (ألمهيمنة)

A subclass can override an inherited method by providing a new method

declaration that has the same name, the same number and types of parameters

and the same result type as the one inherited.

The inherited method is hidden (Shadowed) in the scope of the subclass.

When the method is called for an object of the subclass, the overriding method

is executed using dynamic binding.

The override method is completely re-declaring the method in the

subclass but recognizing that it is a new version of the inherited method, rather

than just another method. Constructors cannot be overridden. Overriding

should not be confused with overloading.

 LEC14 OOP 2018-2019

10

Example 10 (Trace):

Consider the following program…what will be the output and why?

public class One {

protected int a,b;

public void set(){

 a=50;b=500;}

public void print(){

 System.out.println(a+" "+b);} }

public class Two extends One{

 private int x,y;

 public void set(){

 super.set();

 x=100; y=200; }

 public void print(){

 super.print();

 System.out.println(x+" "+y); }

 }

public class Main {

public static void main(String[] args) {

Two t=new Two();

 t.set(); t.print();}

 }

The output:

50 500

100 200

When the super method call for both print and set methods are cancelled the

output will be:

 100 200

Private methods cannot be overridden, so a matching method declared

in a subclass is considered completely separate. Set and print methods in

One class are not overridden).

 LEC14 OOP 2018-2019

11

Example 11(Trace):

public class One {

protected int a,b;

private void set(int a,int b){

 this.a=a;this.b=b;}

private void print(){

 System.out.println(a+" "+b);}

}

public class Two extends One{

 private int x,y;

 public void set(int x,int y){

 this.x=x;this.y=y; }

 public void print(){

 set(100,200);

 System.out.println(x+" "+y); }}

public class Main {

 public static void main(String[] args) {

 Two t=new Two();

 t.print();} }

The output:

100 200

If we override the set method and set the modifier to "protected" in sub

class while it is public in super class, then the compiler will detect an error.

Access to the overridden method using public, protected or the default

if no modifier, must be either the same as that of the super class method or

made more accessible (change it from protected to public). An overriding

method cannot be made less accessible (e.g change from public to protected).

Static method cannot be overridden. Instance methods cannot be

overridden by static method. The final instance method cannot be overridden

also a final static method cannot be re-declared in a subclass(this point will

be explained later).

 LEC14 OOP 2018-2019

12

Example 12 (Trace):

public class One {

 protected int x,y;

 public One(int a,int b){

 x=a;y=b;

 System.out.println("One"+x+" "+y);}

 public One(){

 System.out.println("One One");}

 }

public class Two extends One{

 private int x;

 public Two(){

 super(3,4);

 x=100;

 System.out.println("Two"+x+" "+y+" "+super.x);

 System.out.println("Two"+this.x+" "+y+" "+super.x); }

}

public class Main {

 public static void main(String[] args) {

 Two t=new Two(); // TODO code application logic here

 }

}

 LEC14 OOP 2018-2019

13

Lab

Why we got the following output:

10 20
100 200

public class One {

protected int a,b;

protected void set(int a,int b){

 this.a=a;this.b=b;}

protected void print(){

 System.out.println(a+" "+b);}

}

public class Two extends One{

 private int a,b;

 public void set(int a,int b){

 this.a=a;this.b=b;

 ((One)this).a=10;

 //or super.a=10;

 super.b=20;}

 public void print(){

 this.set(100,200);

 //or set(100,200);

 super.print();

 System.out.println(a+" "+b);

 }}

public class Main {

 public static void main(String[] args) {

 Two t=new Two();

 t.print();}}

