
 LEC7 OOP 2018-2019

1

Constructor

Constructor in Java is a block of code like a method that’s called

when an instance of an object is created. The following table shows the

differences between constructor and method in Java.

Java Constructor Java Method

A constructor is used only to initialize the state of

an object, this means that it allows to provide

initial values for class fields when the object is

created.

A method is used to expose the

behavior of an object and may be

for initializing the state of an

object

A constructor must not have a return type. A method must have a return type.

The constructor is invoked implicitly.

Which is called automatically when a new

instance of an object is created.

The method is invoked explicitly

(not automatically by passing a

message)

The Java compiler provides a default

constructor if you don't have any constructor

in a class.

The method is not provided by the

compiler in any case.

The constructor name must be same as the

class name.

The method name may or may not

be same as class name.

The constructors are not considered members

of a class.

The methods are members of a

class.

The basic format for coding a constructor:

public ClassName (parameter-list)

{

 statements...

}

 LEC7 OOP 2018-2019

2

Constructor Types

There are three types of constructors: Default, No-arg constructor and

Parameterized.

1- Default constructor

In computer programming languages, the term default constructor can

refer to a constructor that is automatically generated by the compiler in the

absence of any programmer-defined constructors (e.g. in Java) and is usually a

nullary constructor. All Java classes have at least one constructor even if we

don't explicitly define one. The compiler automatically provides a public no-

argument constructor for any class without constructors.

 LEC7 OOP 2018-2019

3

Example 1:

Rule: If there is no constructor in a class, compiler automatically creates a default

constructor.

public class Bike{

 public void print(){

System.ot.println(“Bike is created”);

}}

public class Main{

public static void main(String args[]){

//calling a default constructor

Bike b=new Bike();

} }

The Output is:

Bike is created

Calling a Constructor: You call a constructor when you create a new

instance of the class containing Bike b=new Bike();

2- no-arg constructor

Constructor with no arguments is known as no-arg constructor. The

signature is same as default constructor, however body can have any code unlike

default constructor where the body of the constructor is empty.

Example 2:

public class Student{

private int id;

private boolean state;

public Student(){ id=10; state=true;}

 void display(){System.out.println(id+" "+state);} }

 LEC7 OOP 2018-2019

4

public class Main{

public static void main(String args[]){

Student s1=new Student(); Student s2=new Student();

s1.display(); s2.display(); } }

 The output is :

10 true

10 true

Calling a Constructor: You call a constructor when you create a new

instance of the class containing

Student s1=new Student();

Student s2=new Student();

H.W. what will be the output when there is no constructor in class Student?

Hint :In the above class ,when you are not creating any constructor , the

compiler provides you a default constructor.

3- Parameterized constructor

Constructor with arguments (or you can say parameters) is known as

Parameterized constructor. The parameterized constructor is used to provide

different values to the fields of objects.

Example 3:

public class Student{

 private int id;

 private boolean state;

 public Student(int i,boolean b){

 id = i; state = b; }

 public void display(){System.out.println(id+" "+state); } }

 public class Main{

 public static void main(String args[]){

 Student s1 = new Student(111,true);

 Student s2 = new Student(222,false);

 s1.display(); s2.display(); } }

The Output is:

111 true

222 false

Calling a Constructor: You call a constructor when you create a new

instance of the class containing

Student s1 = new Student(111,true);

Student s2 = new Student(222,false);

 LEC7 OOP 2018-2019

5

Constructor Overloading

As like of method overloading, Constructors also can be overloaded.

The same constructor declared with different parameters in the same class is

known as constructor overloading. Compiler differentiates which

constructor is to be called depending upon the number of parameters and their

sequence of data types

Example 4:

public class Student{

 private int id;

 private boolean state;

 private int age;

 public Student(int i,boolean b){

 id = i; state = b; }

 public Student(int i,boolean b,int a){

 id = i; state = b; age=a; }

 public void display(){System.out.println(id+" "+ state +" "+age);}

}

public class Main{

 public static void main(String args[]){

 Student s1 = new Student(111,true);

 Student s2 = new Student(222,false,25);

 s1.display(); s2.display();

 }

}

The Output is:

111 true 0

222 false 25

Example 5 (Trace):

What is the function of the following program and what will be the output?

class Counter {

private int number;

public void add() { number = number+1; }

public void add(int n){ number = number+n; }

public void initialize() { number = 0; }

public void initialize(int k) {number = k; }

public int getNumber() { return number; }

public Counter() { number = 0; } }

 LEC7 OOP 2018-2019

6

public class Main{

public static void main(String[] args){

Counter c1=new Counter();

c1.add(0; c1.add(7);

System.out.println(c1.getNumber());

c1.initialize(); c1.add(5); c1.add(10);

System.out.println(c1.getNumber());

Counter c2=new Counter();

c2.initialize(10); c2.add();c2.add(20);

System.out.println(c2.getNumber());

}}

Example 6 (write):

Define a class called PairOfDice, this class has two integer variable

members d1 and d2 which represent two dices. It has two constructors the first

one is used for setting the initial values for dices while the second one is used for

calling the method roll. The roll method is throwing the dices, so it needs to use

the random method.

Use this class for representing a two players game each player has two

dices. Players will throw the dices and stop when the summation of dices values

for two players are equal then the program will print the number of these throws.

public class PairOfDice {

public int d1;

public int d2;

public PairOfDice() {roll(); }

public PairOfDice(int v1, int v2) {

d1 = v1; d2 = v2; }

public void roll() {

d1 = (int)(Math.random()*6) + 1;

d2 = (int)(Math.random()*6) + 1; }

 }

 LEC7 OOP 2018-2019

7

public class Game{

public static void main(String[] args) {

PairOfDice player1 = new PairOfDice();

PairOfDice player2 = new PairOfDice();

int countRolls; / / Counts how many times the two p a i r s of

int total1, total2; countRolls = 0;

do {

player1.roll();

total1 = player1.d1 + player1.d2;

player2.roll();

total2 = player2.d1 + player2.d2;

countRolls++;

} while (total1 != total2);

System.out.println(" I took " + countRolls + " rolls until the totals were the same. ");

} }

H.W.

Complete the following program to create three counters each of which

uses a different constructor.

class Counter {

private int number, reused;

public void add() { number = number+1; }

public void initialize() { number = 0; reused = reused+1; }

public int getNumber() { return number; }

public int getReused() { return reused; }

public Counter() { number = 0; reused = 0; }

Counter(int x) { number = x; reused = 0; }

Counter(int x, int y) { number = x; reused = y; }

Counter(float z) { number = (int) z; reused = 0; }

}

