
Java Tutorial

Write Once, Run Anywhere

Java - General

◼ Java is:

– platform independent programming
language

– similar to C++ in syntax

– similar to Smalltalk in mental paradigm

◼ Pros: also ubiquitous to net

◼ Cons: interpreted, and still under
development (moving target)

Java - General

◼ Java has some interesting features:

– automatic type checking,

– automatic garbage collection,

– simplifies pointers; no directly accessible

pointer to memory,

– simplified network access,

– multi-threading!

Compile-time EnvironmentCompile-time Environment

Java

Bytecodes

move locally

or through

network

Java

Source

(.java)

Java

Compiler

Java

Bytecode

(.class)

Java

Interpreter

Just in

Time

Compiler

Runtime System

Class

Loader

Bytecode

Verifier

Java

Class

Libraries

Operating System

Hardware

Java

Virtual

machine

How it works…!

How it works…!

◼ Java is independent only for one reason:

– Only depends on the Java Virtual Machine

(JVM),

– code is compiled to bytecode, which is

interpreted by the resident JVM,

– JIT (just in time) compilers attempt to

increase speed.

Java - Security

◼ Pointer denial - reduces chances of

virulent programs corrupting host,

◼ Applets even more restricted -

– May not

• run local executables,

• Read or write to local file system,

• Communicate with any server other than the

originating server.

Object-Oriented

◼ Java supports OOD

– Polymorphism

– Inheritance

– Encapsulation

◼ Java programs contain nothing but

definitions and instantiations of classes

– Everything is encapsulated in a class!

Java Advantages

◼ Portable - Write Once, Run Anywhere

◼ Security has been well thought through

◼ Robust memory management

◼ Designed for network programming

◼ Multi-threaded (multiple simultaneous tasks)

◼ Dynamic & extensible (loads of libraries)

– Classes stored in separate files

– Loaded only when needed

Basic Java Syntax

Primitive Types and Variables

◼ boolean, char, byte, short, int, long, float, double etc.

◼ These basic (or primitive) types are the only types

that are not objects (due to performance issues).

◼ This means that you don’t use the new operator to

create a primitive variable.

◼ Declaring primitive variables:

float initVal;

int retVal, index = 2;

double gamma = 1.2, brightness

boolean valueOk = false;

Initialisation

◼ If no value is assigned prior to use, then the

compiler will give an error

◼ Java sets primitive variables to zero or false

in the case of a boolean variable

◼ All object references are initially set to null

◼ An array of anything is an object

– Set to null on declaration

– Elements to zero false or null on creation

Declarations

int index = 1.2; // compiler error

boolean retOk = 1; // compiler error

double fiveFourths = 5 / 4; // no error!

float ratio = 5.8f; // correct

double fiveFourths = 5.0 / 4.0; // correct

◼ 1.2f is a float value accurate to 7 decimal places.

◼ 1.2 is a double value accurate to 15 decimal places.

◼ All Java assignments are right associative

int a = 1, b = 2, c = 5

a = b = c

System.out.print(

“a= “ + a + “b= “ + b + “c= “ + c)

◼ What is the value of a, b & c

◼ Done right to left: a = (b = c);

Assignment

Basic Mathematical Operators

◼ * / % + - are the mathematical operators

◼ * / % have a higher precedence than + or -

double myVal = a + b % d – c * d / b;

◼ Is the same as:
double myVal = (a + (b % d)) –

((c * d) / b);

Statements & Blocks

◼ A simple statement is a command terminated by

a semi-colon:

name = “Fred”;

◼ A block is a compound statement enclosed in

curly brackets:

{

name1 = “Fred”; name2 = “Bill”;

}

◼ Blocks may contain other blocks

Flow of Control

◼ Java executes one statement after the other

in the order they are written

◼ Many Java statements are flow control

statements:

Alternation: if, if else, switch

Looping: for, while, do while

Escapes: break, continue, return

If – The Conditional Statement

◼ The if statement evaluates an expression and if

that evaluation is true then the specified action is

taken

if (x < 10) x = 10;

◼ If the value of x is less than 10, make x equal to

10

◼ It could have been written:

if (x < 10)

x = 10;

◼ Or, alternatively:

if (x < 10) { x = 10; }

Relational Operators

== Equal (careful)

!= Not equal

>= Greater than or equal

<= Less than or equal

> Greater than

< Less than

If… else

◼ The if … else statement evaluates an expression and

performs one action if that evaluation is true or a

different action if it is false.

if (x != oldx) {

System.out.print(“x was changed”);

}

else {

System.out.print(“x is unchanged”);

}

Nested if … else

if (myVal > 100) {

if (remainderOn == true) {

myVal = mVal % 100;

}

else {

myVal = myVal / 100.0;

}

}

else

{

System.out.print(“myVal is in range”);

}

else if

◼ Useful for choosing between alternatives:
if (n == 1) {

// execute code block #1

}

else if (j == 2) {

// execute code block #2

}

else {

// if all previous tests have failed,

execute code block #3

}

A Warning…

WRONG!

if(i == j)

if (j == k)

System.out.print(

“i equals k”);

else

System.out.print(

“i is not equal

to j”);

CORRECT!

if(i == j) {

if (j == k)

System.out.print

(“i equals k”);

}

else

System.out.print

(“i is not equal

to j”); // Correct!

The switch Statement
switch (n) {

case 1:

// execute code block #1

break;

case 2:

// execute code block #2

break;

default:

// if all previous tests fail then

//execute code block #4

break;

}

The for loop

◼ Loop n times

for (i = 0; i < n; n++) {

// this code body will execute n times

// ifrom 0 to n-1

}

◼ Nested for:

for (j = 0; j < 10; j++) {

for (i = 0; i < 20; i++){

// this code body will execute 200 times

}

}

while loops

while(response == 1) {

System.out.print(“ID =” +

userID[n]);

n++;

response = readInt(“Enter “);

}

What is the minimum number of times the loop
is executed?

What is the maximum number of times?

do {… } while loops

do {

System.out.print(“ID =” + userID[n]);

n++;

response = readInt(“Enter ”);

}while (response == 1);

What is the minimum number of times the loop
is executed?

What is the maximum number of times?

Break

◼ A break statement causes an exit from

the innermost containing while, do, for

or switch statement.

for (int i = 0; i < maxID, i++) {

if (userID[i] == targetID) {

index = i;

break;

}

} // program jumps here after break

Continue

◼ Can only be used with while, do or for.

◼ The continue statement causes the innermost loop to

start the next iteration immediately
for (int i = 0; i < maxID; i++) {

if (userID[i] != -1) continue;

System.out.print(“UserID ” + i + “ :” +

userID);

}

Arrays

◼ Am array is a list of similar things

◼ An array has a fixed:

– name

– type

– length

◼ These must be declared when the array is created.

◼ Arrays sizes cannot be changed during the execution

of the code

myArray has room for 8 elements

◼ the elements are accessed by their index

◼ in Java, array indices start at 0

3 6 3 1 6 3 4 1myArray =

0 1 2 3 4 5 6 7

Declaring Arrays

int myArray[];

declares myArray to be an array of

integers

myArray = new int[8];

sets up 8 integer-sized spaces in

memory, labelled myArray[0] to

myArray[7]

int myArray[] = new int[8];

combines the two statements in one line

Assigning Values

◼ refer to the array elements by index to store

values in them.

myArray[0] = 3;

myArray[1] = 6;

myArray[2] = 3; ...

◼ can create and initialise in one step:

int myArray[] = {3, 6, 3, 1, 6, 3, 4, 1};

Iterating Through Arrays

◼ for loops are useful when dealing with arrays:

for (int i = 0; i <

myArray.length; i++) {

myArray[i] = getsomevalue();

}

