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UNIT-I    
INTRODUCTION TO ALGORITHMS AND DATA STRUCTURES  

 

Definition: - An algorithm is a Step By Step process to solve a problem, where each step 
indicates an intermediate task. Algorithm contains finite number of steps that leads to the 
solution of the problem. 
Properties /Characteristics of an Algorithm:-  
Algorithm has the following basic properties  

 Input-Output:- Algorithm takes ‘0’ or more input and produces the required output. 
This is the basic characteristic of an algorithm. 

 Finiteness:- An algorithm must terminate in countable number of steps. 

 Definiteness: Each step of an algorithm must be stated clearly and unambiguously. 

 Effectiveness: Each and every step in an algorithm can be converted in to 
programming language statement. 

 Generality: Algorithm is generalized one. It works on all set of inputs and provides 
the required output. In other words it is not restricted to a single input value. 

 
 Categories of Algorithm: 
 Based on the different types of steps in an Algorithm, it can be divided into three 
categories, namely 

 Sequence 

 Selection and  

 Iteration 
Sequence: The steps described in an algorithm are performed successively one by one 
without skipping any step.  The sequence of steps defined in an algorithm should be simple 
and easy to understand. Each instruction of such an algorithm is executed, because no 
selection procedure or conditional branching exists in a sequence algorithm. 
Example: 
// adding two numbers 
Step 1: start 
Step 2: read a,b 
Step 3: Sum=a+b 
Step 4: write Sum 
Step 5: stop 
Selection: The sequence type of algorithms are not sufficient to solve the problems, which 
involves decision and conditions. In order to solve the problem which involve decision 
making or option selection, we go for Selection type of algorithm. The general format of 
Selection type of statement is as shown below: 
                         if(condition) 
                            Statement-1; 
                        else 
                            Statement-2; 
The above syntax specifies that if the condition is true, statement-1 will be executed 
otherwise statement-2 will be executed. In case the operation is unsuccessful. Then 
sequence of algorithm should be changed/ corrected in such a way that the system will re-
execute until the operation is successful. 
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Iteration: Iteration type algorithms are used in solving the problems which involves 
repetition of statement. In this type of algorithms, a particular number of statements are 
repeated ‘n’ no. of times. 
 Example1: 
 
Step 1 : start 
Step 2 : read n 
Step 3 : repeat step 4 until n>0 
Step 4 : (a)  r=n mod 10 
      (b) s=s+r 
      (c)  n=n/10 
Step 5 : write s 
Step 6 : stop 
Performance Analysis an Algorithm: 
The Efficiency of an Algorithm can be measured by the following metrics. 
              i. Time Complexity    and  
             ii. Space Complexity. 
i.Time Complexity:  
The amount of time required for an algorithm to complete its execution is its time 
complexity. An algorithm is said to be efficient if it takes the minimum (reasonable) amount 
of time to complete its execution. 
ii. Space Complexity:  
The amount of space occupied by an algorithm is known as Space Complexity. An algorithm 
is said to be efficient if it occupies less space and required the minimum amount of time to 
complete its execution. 
 
1.Write an algorithm for roots of a Quadratic Equation? 
// Roots of a quadratic Equation 
Step 1 : start 
Step 2 : read a,b,c 
Step 3 :  if (a= 0) then step 4 else step 5 
Step 4 :  Write “ Given equation is a linear equation “ 
Step 5 :  d=(b * b) _ (4 *a *c) 
Step 6 : if ( d>0) then step 7 else step8 
Step 7 : Write “ Roots are real and Distinct” 
Step 8:  if(d=0) then step 9 else step 10 
Step 9:  Write “Roots are real and equal” 
Step 10: Write “ Roots are Imaginary” 
Step 11: stop 
 



3 
 

2. Write an algorithm to find the largest among three different numbers entered by user 
Step 1: Start 
Step 2: Declare variables a,b and c. 
Step 3: Read variables a,b and c. 
Step 4: If a>b 
           If a>c 
              Display a is the largest number. 
           Else 
              Display c is the largest number. 
        Else 
           If b>c 
              Display b is the largest number. 
           Else 
              Display c is the greatest number.   
Step 5: Stop 
 
3.Write an algorithm to find the factorial of a number entered by user. 
Step 1: Start 
Step 2: Declare variables n,factorial and i. 
Step 3: Initialize variables 
          factorial←1 
          i←1 
Step 4: Read value of n 
Step 5: Repeat the steps until i=n 
     5.1: factorial←factorial*i 
     5.2: i←i+1 
Step 6: Display factorial 
Step 7: Stop 
 
4.Write an algorithm to find the Simple Interest for given Time and Rate of Interest . 
Step 1: Start 
Step 2: Read P,R,S,T. 
Step 3: Calculate S=(PTR)/100 
Step 4: Print S 
Step 5: Stop 
 

ASYMPTOTIC NOTATIONS 
Asymptotic analysis of an algorithm refers to defining the mathematical 
boundation/framing of its run-time performance. Using asymptotic analysis, we can very 
well conclude the best case, average case, and worst case scenario of an algorithm. 
Asymptotic analysis is input bound i.e., if there's no input to the algorithm, it is concluded 
to work in a constant time. Other than the "input" all other factors are considered 
constant. 
Asymptotic analysis refers to computing the running time of any operation in mathematical 
units of computation. For example, the running time of one operation is computed as f(n) 
and may be for another operation it is computed as g(n2). This means the first operation 
running time will increase linearly with the increase in n and the running time of the 
second operation will increase exponentially when n increases. Similarly, the running time 
of both operations will be nearly the same if n is significantly small. 
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The time required by an algorithm falls under three types − 
 Best Case − Minimum time required for program execution. 
 Average Case − Average time required for program execution. 
 Worst Case − Maximum time required for program execution. 

Asymptotic Notations 
Following are the commonly used asymptotic notations to calculate the running time 
complexity of an algorithm. 

 Ο Notation 
 Ω Notation 
 θ Notation 

Big Oh Notation, Ο 
The notation Ο(n) is the formal way to express the upper bound of an algorithm's running 
time. It measures the worst case time complexity or the longest amount of time an 
algorithm can possibly take to complete. 

 
For example, for a function f(n) 
Ο(f(n)) = { g(n) : there exists c > 0 and n0 such that f(n) ≤ c.g(n) for all n > n0. } 
Omega Notation, Ω 
The notation Ω(n) is the formal way to express the lower bound of an algorithm's running 
time. It measures the best case time complexity or the best amount of time an algorithm 
can possibly take to complete. 

 
For example, for a function f(n) 
Ω(f(n)) ≥ { g(n) : there exists c > 0 and n0 such that g(n) ≤ c.f(n) for all n > n0. } 
Theta Notation, θ 
The notation θ(n) is the formal way to express both the lower bound and the upper bound 
of an algorithm's running time. It is represented as follows − 
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θ(f(n)) = { g(n) if and only if g(n) =  Ο(f(n)) and g(n) = Ω(f(n)) for all n > n0. } 
 

  

DATA STRUCTURES 
Data may be organized in many different ways logical or mathematical model of a program 
particularly organization of data. This organized data is called “Data Structure”. 

Or 
The organized collection of data is called a ‘Data Structure’. 
 
            
 
Data Structure involves two complementary goals. The first goal is to identify and develop 
useful, mathematical entities and operations and to determine what class of problems can 
be solved by using these entities and operations. The second goal is to determine 
representation for those abstract entities to implement abstract operations on this concrete 
representation. 

 
 
Primitive Data structures are directly supported by the language ie; any operation is directly 
performed in these data items. 
Ex: integer, Character, Real numbers etc. 
Non-primitive data types are not defined by the programming language, but are instead 
created by the programmer.  

Data Structure=Organized data +Allowed operations 
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               Linear data structures organize their data elements in a linear fashion, where data 
elements are attached one after the other. Linear data structures are very easy to 
implement, since the memory of the computer is also organized in a linear fashion. Some 
commonly used linear data structures are arrays, linked lists, stacks and queues. 
                   In nonlinear data structures, data elements are not organized in a sequential 
fashion. Data structures like multidimensional arrays, trees, graphs, tables and sets are 
some examples of widely used nonlinear data structures.  
Operations on the Data Structures: 
Following operations can be performed on the data structures: 

1. Traversing 
      2. Searching 
      3. Inserting 
      4. Deleting 
      5. Sorting 
      6. Merging 

1. Traversing- It is used to access each data item exactly once so that it can be processed. 
2. Searching- It is used to find out the location of the data item if it exists in the given 
collection of data items. 
3. Inserting- It is used to add a new data item in the given collection of data items. 
4. Deleting- It is used to delete an existing data item from the given collection of data items. 
5. Sorting- It is used to arrange the data items in some order i.e. in ascending or descending 
order in case of numerical data and in dictionary order in case of alphanumeric data. 
6. Merging- It is used to combine the data items of two sorted files into single file in the 
sorted form. 
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UNIT-II 
 STACKS AND QUEUES 

 
STACKS 
A Stack is linear data structure. A stack is a list of elements in which an element may be 
inserted or deleted only at one end, called the top of the stack. Stack principle is LIFO (last 
in, first out). Which element inserted last on to the stack that element deleted first from the 
stack.  
 
As the items can be added or removed only from the top i.e. the last item to be added to a 
stack is the first item to be removed. 
 
Real life examples of stacks are: 

 
Operations on stack: 
 
The two basic operations associated with stacks are:  
1. Push 
2. Pop 
 
While performing push and pop operations the following test must be conducted on the 
stack. 

a) Stack is empty or not  b) stack is full or not 
 
1. Push: Push operation is used to add new elements in to the stack. At the time of addition 
first check the stack is full or not. If the stack is full it generates an error message "stack 
overflow".  
  
2. Pop: Pop operation is used to delete elements from the stack. At the time of deletion first 
check the stack is empty or not. If the stack is empty it generates an error message "stack 
underflow".  
 

All insertions and deletions take place at the same end, so the last element added to 
the stack will be the first element removed from the stack. When a stack is created, the 
stack base remains fixed while the stack top changes as elements are added and removed. 
The most accessible element is the top and the least accessible element is the bottom of the 
stack.  
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Representation of Stack (or) Implementation of stack: 
The stack should be represented in two ways: 

1. Stack using array 
2. Stack using linked list 

 
1. Stack using array:  
Let us consider a stack with 6 elements capacity. This is called as the size of the stack. The 
number of elements to be added should not exceed the maximum size of the stack. If we 
attempt to add new element beyond the maximum size, we will encounter a stack overflow 
condition. Similarly, you cannot remove elements beyond the base of the stack. If such is 
the case, we will reach a stack underflow condition. 
 
1.push():When an element is added to a stack, the operation is performed by push(). Below 
Figure shows the creation of a stack and addition of elements using push(). 
 

 
Initially top=-1, we can insert an element in to the stack, increment the top value i.e 
top=top+1. We can insert an element in to the stack first check the condition is stack is full 
or not. i.e top>=size-1. Otherwise add the element in to the stack. 
 

void push()  
{  

int x;  
if(top >= n-1)  

    {  
printf("\n\nStack 

Overflow..");  
return;  

}  
else  
{  

printf("\n\nEnter data: ");  
scanf("%d", &x);  
stack[top] = x;  
top = top + 1;  
printf("\n\nData Pushed into 
the stack");  

}  
} 

Algorithm: Procedure for push(): 
 
Step 1: START 
Step 2: if top>=size-1 then 
              Write “ Stack is Overflow” 
Step 3: Otherwise 
           3.1: read data value ‘x’ 
           3.2: top=top+1; 
           3.3: stack[top]=x; 
Step 4: END 
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2.Pop(): When an element is taken off from the stack, the operation is performed by pop(). 
Below figure shows a stack initially with three elements and shows the deletion of elements 
using pop(). 
 

 
 
We can insert an element from the stack, decrement the top value i.e top=top-1.  
We can delete an element from the stack first check the condition is stack is empty or not. 
 i.e top==-1. Otherwise remove the element from the stack. 
 

Void pop() 
{ 
     If(top==-1) 
     {  
          Printf(“Stack is Underflow”); 
     } 
     else 
     { 
          printf(“Delete data %d”,stack[top]); 
          top=top-1; 
     } 
} 

Algorithm: procedure pop(): 
Step 1: START 
Step 2: if top==-1 then 
            Write “Stack is Underflow” 
Step 3: otherwise 
           3.1: print “deleted element” 
           3.2: top=top-1; 
Step 4: END 

 
3.display(): This operation performed display the elements in the stack. We display the 
element in the stack check the condition is stack is empty or not i.e top==-1.Otherwise 
display the list of elements in the stack. 
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void display() 
{ 
     If(top==-1) 
     {  
          Printf(“Stack is Underflow”); 
     } 
     else 
     { 
          printf(“Display elements are:); 
          for(i=top;i>=0;i--) 
               printf(“%d”,stack[i]); 
      } 
} 

Algorithm: procedure pop(): 
Step 1: START 
Step 2: if top==-1 then 
            Write “Stack is Underflow” 
Step 3: otherwise 
           3.1: print “Display elements are” 
           3.2: for top to 0  
                  Print ‘stack[i]’ 
Step 4: END 

 
Source code for stack operations, using array: 
 
#include<stdio.h> 
#inlcude<conio.h>  
int stack[100],choice,n,top,x,i; 
void push(void); 
void pop(void); 
void display(void); 
int main() 
{ 
    //clrscr(); 
    top=-1; 
    printf("\n Enter the size of STACK[MAX=100]:"); 
    scanf("%d",&n); 
    printf("\n\t STACK OPERATIONS USING ARRAY"); 
    printf("\n\t--------------------------------"); 
    printf("\n\t 1.PUSH\n\t 2.POP\n\t 3.DISPLAY\n\t 4.EXIT"); 
    do 
    { 
        printf("\n Enter the Choice:"); 
        scanf("%d",&choice); 
        switch(choice) 
        { 
            case 1: 
            { 
                push(); 
                break; 
            } 
            case 2: 
            { 
                pop(); 
                break; 
            } 
            case 3: 
            { 
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                display(); 
                break; 
            } 
            case 4: 
            { 
                printf("\n\t EXIT POINT "); 
                break; 
            } 
            default: 
            { 
                printf ("\n\t Please Enter a Valid Choice(1/2/3/4)"); 
            } 
                  
        } 
    } 
    while(choice!=4); 
    return 0; 
} 
void push() 
{ 
    if(top>=n-1) 
    { 
        printf("\n\tSTACK is over flow"); 
          
    } 
    else 
    { 
        printf(" Enter a value to be pushed:"); 
        scanf("%d",&x); 
        top++; 
        stack[top]=x; 
    } 
} 
void pop() 
{ 
    if(top<=-1) 
    { 
        printf("\n\t Stack is under flow"); 
    } 
    else 
    { 
        printf("\n\t The popped elements is %d",stack[top]); 
        top--; 
    } 
} 
void display() 
{ 
    if(top>=0) 
    { 
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        printf("\n The elements in STACK \n"); 
        for(i=top; i>=0; i--) 
            printf("\n%d",stack[i]); 
        printf("\n Press Next Choice"); 
    } 
    else 
    { 
        printf("\n The STACK is empty"); 
    } 
     
} 
 
2. Stack using Linked List: 
We can represent a stack as a linked list. In a stack push and pop operations are performed 
at one end called top. We can perform similar operations at one end of list using top 
pointer. The linked stack looks as shown in figure. 
 

 
Applications of stack: 
1. Stack is used by compilers to check for balancing of parentheses, brackets and braces. 
2. Stack is used to evaluate a postfix expression. 
3. Stack is used to convert an infix expression into postfix/prefix form. 
4. In recursion, all intermediate arguments and return values are stored on the processor’s 
stack. 
5. During a function call the return address and arguments are pushed onto a stack and on 
return they are popped off. 
 
Converting and evaluating Algebraic expressions: 
An algebraic expression is a legal combination of operators and operands. Operand is the 
quantity on which a mathematical operation is performed. Operand may be a variable like x, 
y, z or a constant like 5, 4, 6 etc. Operator is a symbol which signifies a mathematical or 
logical operation between the operands. Examples of familiar operators include +, -, *, /, ^ 
etc. 
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An algebraic expression can be represented using three different notations. They are infix, 
postfix and prefix notations: 
Infix: It is the form of an arithmetic expression in which we fix (place) the arithmetic 
operator in between the two operands. 
Example: A + B 
Prefix: It is the form of an arithmetic notation in which we fix (place) the arithmetic 
operator before (pre) its two operands. The prefix notation is called as polish notation. 
Example: + A B 
 
Postfix: It is the form of an arithmetic expression in which we fix (place) the arithmetic 
operator after (post) its two operands. The postfix notation is called as suffix notation and is 
also referred to reverse polish notation. 
Example: A B +  
Conversion from infix to postfix: 
Procedure to convert from infix expression to postfix expression is as follows: 
1. Scan the infix expression from left to right. 
2. a) If the scanned symbol is left parenthesis, push it onto the stack. 

b) If the scanned symbol is an operand, then place directly in the postfix expression 
(output). 
c) If the symbol scanned is a right parenthesis, then go on popping all the items from the 
stack and place them in the postfix expression till we get the matching left parenthesis. 
d) If the scanned symbol is an operator, then go on removing all the operators from the 
stack and place them in the postfix expression, if and only if the precedence of the 
operator which is on the top of the stack is greater than (or greater than or equal) to the 
precedence of the scanned operator and push the scanned operator onto the stack 
otherwise, push the scanned operator onto the stack. 

The three important features of postfix expression are: 
1. The operands maintain the same order as in the equivalent infix expression. 
2. The parentheses are not needed to designate the expression unambiguously. 
3. While evaluating the postfix expression the priority of the operators is no longer relevant. 
 
 
We consider five binary operations: +, -, *, / and $ or ↑ (exponentiation). For these binary 
operations, the following in the order of precedence (highest to lowest): 
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Evaluation of postfix expression: 
The postfix expression is evaluated easily by the use of a stack.  

1. When a number is seen, it is pushed onto the stack;  
2. When an operator is seen, the operator is applied to the two numbers that are 

popped from the stack and the result is pushed onto the stack.  
3. When an expression is given in postfix notation, there is no need to know any 

precedence rules; this is our obvious advantage. 
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QUEUE 
A queue is linear data structure and collection of elements. A queue is another special kind 
of list, where items are inserted at one end called the rear and deleted at the other end 
called the front. The principle of queue is a “FIFO” or “First-in-first-out”. 
Queue is an abstract data structure. A queue is a useful data structure in programming. It is 
similar to the ticket queue outside a cinema hall, where the first person entering the queue 
is the first person who gets the ticket. 
A real-world example of queue can be a single-lane one-way road, where the vehicle enters 
first, exits first. 

 
More real-world examples can be seen as queues at the ticket windows and bus-stops and 
our college library. 
 

 
The operations for a queue are analogues to those for a stack; the difference is that the 
insertions go at the end of the list, rather than the beginning. 
Operations on QUEUE: 
A queue is an object or more specifically an abstract data structure (ADT) that allows the 
following operations: 

 Enqueue or insertion: which inserts an element at the end of the queue. 
 Dequeue or deletion: which deletes an element at the start of the queue. 

Queue operations work as follows: 
1. Two pointers called FRONT and REAR are used to keep track of the first and last 

elements in the queue. 
2. When initializing the queue, we set the value of FRONT and REAR to 0. 
3. On enqueing an element, we increase the value of REAR index and place the new 

element in the position pointed to by REAR. 
4. On dequeueing an element, we return the value pointed to by FRONT and increase 

the FRONT index. 
5. Before enqueing, we check if queue is already full. 
6. Before dequeuing, we check if queue is already empty. 
7. When enqueing the first element, we set the value of FRONT to 1. 
8. When dequeing the last element, we reset the values of FRONT and REAR to 0. 
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Representation of Queue (or) Implementation of Queue: 
The queue can be represented in two ways: 

1. Queue using Array 
2. Queue using Linked List 

1.Queue using Array: 
Let us consider a queue, which can hold maximum of five elements. Initially the queue is 
empty. 

 
Now, insert 11 to the queue. Then queue status will be:  

 
Next, insert 22 to the queue. Then the queue status is: 

 
Again insert another element 33 to the queue. The status of the queue is: 

 
Now, delete an element. The element deleted is the element at the front of the queue.So 
the status of the queue is: 

 
Again, delete an element. The element to be deleted is always pointed to by the FRONT 
pointer. So, 22 is deleted. The queue status is as follows: 

 
 
Now, insert new elements 44 and 55 into the queue. The queue status is: 
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Next insert another element, say 66 to the queue. We cannot insert 66 to the queue as the 
rear crossed the maximum size of the queue (i.e., 5). There will be queue full signal. The 
queue status is as follows: 

 
Now it is not possible to insert an element 66 even though there are two vacant positions in 
the linear queue. To overcome this problem the elements of the queue are to be shifted 
towards the beginning of the queue so that it creates vacant position at the rear end. Then 
the FRONT and REAR are to be adjusted properly. The element 66 can be inserted at the 
rear end. After this operation, the queue status is as follows: 

 
 

This difficulty can overcome if we treat queue position with index 0 as a position that comes 
after position with index 4 i.e., we treat the queue as a circular queue. 
 
Queue operations using array: 
a.enqueue() or insertion():which inserts an element at the end of the queue. 

void insertion() 
{ 
    if(rear==max) 
          printf("\n Queue is Full"); 
    else 
    { 
            printf("\n Enter no %d:",j++); 
            scanf("%d",&queue[rear++]); 
     } 
} 

Algorithm: Procedure for insertion(): 
Step-1:START 
Step-2: if rear==max then 
               Write ‘Queue is full’ 
Step-3: otherwise 
  3.1: read element ‘queue[rear]’ 
Step-4:STOP 

 
b.dequeue() or deletion():  which deletes an element at the start of the queue. 

void deletion() 
{ 
     if(front==rear) 
    { 
        printf("\n Queue is empty"); 
    } 
    else 
     { 
         printf("\n Deleted Element is     
                    %d",queue[front++]); 
                x++; 
      } } 

Algorithm: procedure for deletion(): 
Step-1:START 
Step-2: if front==rear then 
            Write’ Queue is empty’ 
Step-3: otherwise 
           3.1: print deleted element 
 Step-4:STOP        
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c.dispaly(): which displays an elements in the queue. 

void deletion() 
{ 
     if(front==rear) 
    { 
        printf("\n Queue is empty"); 
    } 
            else 
            { 
                for(i=front; i<rear; i++) 
                { 
                    printf("%d",queue[i]); 
                    printf("\n"); 
                } 
            } 
} 

Algorithm: procedure for deletion(): 
Step-1:START 
Step-2: if front==rear then 
            Write’ Queue is empty’ 
Step-3: otherwise 
           3.1: for i=front to rear then 
           3.2: print ‘queue[i]’ 
Step-4:STOP        
 

 
 
2. Queue using Linked list: 
We can represent a queue as a linked list. In a queue data is deleted from the front end and 
inserted at the rear end. We can perform similar operations on the two ends of alist. We use 
two pointers front and rear for our linked queue implementation. 
The linked queue looks as shown in figure: 

 
 

Applications of Queue: 
1. It is used to schedule the jobs to be processed by the CPU. 
2. When multiple users send print jobs to a printer, each printing job is kept in the printing 
queue. Then the printer prints those jobs according to first in first out (FIFO) basis. 
3. Breadth first search uses a queue data structure to find an element from a graph. 
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CIRCULAR QUEUE 
A more efficient queue representation is obtained by regarding the array Q[MAX] as 
circular. Any number of items could be placed on the queue. This implementation of a 
queue is called a circular queue because it uses its storage array as if it were a circle instead 
of a linear list. 
There are two problems associated with linear queue. They are: 
 

 Time consuming: linear time to be spent in shifting the elements to the beginning of 
the queue. 

 Signaling queue full: even if the queue is having vacant position. 
For example, let us consider a linear queue status as follows: 

 
Next insert another element, say 66 to the queue. We cannot insert 66 to the queue as the 
rear crossed the maximum size of the queue (i.e., 5). There will be queue full signal. The 
queue status is as follows: 

 
This difficulty can be overcome if we treat queue position with index zero as a position that 
comes after position with index four then we treat the queue as a circular queue. 
In circular queue if we reach the end for inserting elements to it, it is possible to insert new 
elements if the slots at the beginning of the circular queue are empty. 
Representation of Circular Queue: 
Let us consider a circular queue, which can hold maximum (MAX) of six elements. Initially 
the queue is empty. 

 
Now, insert 11 to the circular queue. Then circular queue status will be: 
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Insert new elements 22, 33, 44 and 55 into the circular queue. The circular queue status is: 

 
Now, delete an element. The element deleted is the element at the front of the circular 
queue. So, 11 is deleted. The circular queue status is as follows: 

 
Again, delete an element. The element to be deleted is always pointed to by the FRONT 
pointer. So, 22 is deleted. The circular queue status is as follows: 

 
 
Again, insert another element 66 to the circular queue. The status of the circular queue is: 
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Now, insert new elements 77 and 88 into the circular queue. The circular queue status is: 

 
 
Now, if we insert an element to the circular queue, as COUNT = MAX we cannot add the 
element to circular queue. So, the circular queue is full. 
 
Operations on Circular queue: 
 
a.enqueue() or insertion():This function is used to insert an element into the circular queue. 
In a circular queue, the new element is always inserted at Rear position. 
 

void insertCQ() 
{ 
       int data; 
       if(count ==MAX) 
      { 
          printf("\n Circular Queue is Full"); 
       } 
      else 
      { 
          printf("\n Enter data: "); 
          scanf("%d", &data); 
          CQ[rear] = data; 
          rear = (rear + 1) % MAX; 
          count ++; 
printf("\n Data Inserted in the Circular 
Queue "); 
     } 
} 

Algorithm: procedure of insertCQ(): 
 
Step-1:START 
Step-2: if count==MAX then 
            Write “Circular queue is full” 
Step-3:otherwise 
         3.1: read the data element 
         3.2: CQ[rear]=data 
         3.3: rear=(rear+1)%MAX 
         3.4: count=count+1 
Step-4:STOP   
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b.dequeue() or deletion():This function is used to delete an element from the circular 
queue. In a circular queue, the element is always deleted from front position. 

void deleteCQ() 
{ 
if(count ==0) 
{ 
printf("\n\nCircular Queue is Empty.."); 
} 
else 
{ 
printf("\n Deleted element from Circular 
Queue is %d ", CQ[front]); 
front = (front + 1) % MAX; 
count --; 
} 
} 

Algorithm: procedure of deleteCQ(): 
 
Step-1:START 
Step-2: if count==0 then 
            Write “Circular queue is empty” 
Step-3:otherwise 
         3.1: print the deleted element 
         3.2: front=(front+1)%MAX 
         3.3: count=count-1 
Step-4:STOP   

 
c.dispaly():This function is used to display the list of elements in the circular queue. 

void displayCQ() 
{ 
int i, j; 
if(count ==0) 
{ 
printf("\n\n\t Circular Queue is Empty "); 
} 
else 
{ 
printf("\n Elements in Circular Queue are: 
"); 
j = count; 
for(i = front; j != 0; j--) 
{ 
printf("%d\t", CQ[i]); 
i = (i + 1) % MAX; 
} 
} 
} 

Algorithm: procedure of displayCQ(): 
 
Step-1:START 
Step-2: if count==0 then 
            Write “Circular queue is empty” 
Step-3:otherwise 
         3.1: print the list of elements 
         3.2: for i=front to j!=0 
         3.3: print CQ[i] 
         3.4: i=(i+1)%MAX 
Step-4:STOP   

 
Deque: 
 In the preceding section we saw that a queue in which we insert items at one end and from 
which we remove items at the other end. In this section we examine an extension of the 
queue, which provides a means to insert and remove items at both ends of the queue. This 
data structure is a deque. The word deque is an acronym derived from double-ended queue. 
Below figure shows the representation of a deque. 
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deque provides four operations. Below Figure shows the basic operations on a deque. 
• enqueue_front: insert an element at front. 
• dequeue_front: delete an element at front. 
• enqueue_rear: insert element at rear. 
• dequeue_rear: delete element at rear. 
 

 
There are two variations of deque. They are: 
• Input restricted deque (IRD) 
• Output restricted deque (ORD) 
An Input restricted deque is a deque, which allows insertions at one end but allows 
deletions at both ends of the list. 
An output restricted deque is a deque, which allows deletions at one end but allows 
insertions at both ends of the list. 
Priority Queue: 
A priority queue is a collection of elements such that each element has been assigned a 
priority. We can insert an element in priority queue at the rare position. We can delete an 
element from the priority queue based on the elements priority and such that the order in 
which elements are deleted and processed comes from the following rules: 
 
1. An element of higher priority is processed before any element of lower priority. 
2. Two elements with same priority are processed according to the order in which they were 
added to the queue. It follows FIFO or FCFS(First Comes  First serve) rules. 
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We always remove an element with the highest priority, which is given by the minimal 
integer priority assigned. 

 
A prototype of a priority queue is time sharing system: programs of high priority are 
processed first, and programs with the same priority form a standard queue. An efficient 
implementation for the Priority Queue is to use heap, which in turn can be used for sorting 
purpose called heap sort 
 
Priority queues are two types: 

1. Ascending order priority queue 
2. Descending order priority queue  

1. Ascending order priority queue: It is Lower priority number to high priority number. 
Examples: order is 1,2,3,4,5,6,7,8,9,10 
2. Descending order priority queue: It is high priority number to lowest priority number. 
Examples: Order is 10,9,8,7,6,5,4,3,2,1 
Implementation of Priority Queue: 
Implementation of priority queues are two types: 

1. Through Queue(Using Array) 
2. Through Sorted List(Using Linked List) 

1. Through Queue (Using Array): In this case element is simply added at the rear end as 
usual. For deletion, the element with highest priority is searched and then deleted. 

 
2. Through sorted List (Using Linked List): In this case insertion is costly because the 
element insert at the proper place in the list based on the priority. Here deletion is easy 
since the element with highest priority will always be in the beginning of the list. 
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1. Difference between stacks and Queues? 

stacks Queues 

1.A stack is a linear list of elements in which 
the element may be inserted or deleted at 
one end. 
 
2. In stacks, elements which are inserted 
last is the first  element to be deleted. 
 
3.Stacks are called LIFO (Last In First 
Out)list 
 
4.In stack elements are removed in reverse 
order in which thy are inserted. 
 
5.suppose the elements a,b,c,d,e are 
inserted in the stack, the deletion of 
elements will be e,d,c,b,a. 
 
6.In stack there is only one pointer to insert 
and delete called “Top”. 
 
7.Initially top=-1 indicates a stack is empty. 
 
8.Stack is full represented by the condition 
TOP=MAX-1(if array index starts from ‘0’). 
 
9.To push an element into a stack, Top is 
incremented by one 
 
10.To POP an element from stack,top is 
decremented by one. 

1.A Queue is a linerar list of elements in which 
the elements are added at one end and 
deletes the elements at another end. 
2. . In Queue the  element  which is inserted 
first is the element  deleted first. 
 
3. Queues are called FIFO (First In First 
Out)list. 
 
4. In Queue elements are removed in the 
same  order in which thy are inserted. 
 
5. Suppose the elements a,b,c,d,e are inserted 
in the Queue, the deletion of elements will be 
in the same  order in which thy are inserted. 
 
6. In Queue there are two pointers one for 
insertion called “Rear” and another for 
deletion called “Front”. 
 
7. Initially Rear=Front=-1 indicates a Queue is 
empty. 
 
8.Queue is full represented by the condition  
Rear=Max-1. 
 
9.To insert an element into Queue, Rear is 
incremented by one. 
 
10.To delete an element from Queue, Front is 



27 
 

 
11.The conceptual view of Stack is as 
follows: 

 

incremented by one. 
 
11.The conceptual view of Queue is as 
follows: 
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UNIT-III 
LINEAR LIST 

INTRODUCTION 
Linear Data Structures: 
Linear data structures are those data structures in which data elements are accessed (read 
and written) in sequential fashion (one by one). Ex: Stacks, Queues, Lists, Arrays 
Non Linear Data Structures: 
Non Linear Data Structures are those in which data elements are not accessed in sequential 
fashion. 
Ex: trees, graphs 
Difference between Linear and Nonlinear Data Structures 
Main difference between linear and nonlinear data structures lie in the way they organize 
data elements. In linear data structures, data elements are organized sequentially and 
therefore they are easy to implement in the computer’s memory. In nonlinear data 
structures, a data element can be attached to several other data elements to represent 
specific relationships that exist among them. Due to this nonlinear structure, they might be 
difficult to be implemented in computer’s linear memory compared to implementing linear 
data structures. Selecting one data structure type over the other should be done carefully 
by considering the relationship among the data elements that needs to be stored. 

LINEAR LIST 
A data structure is said to be linear if its elements form a sequence. A linear list is a list that 
displays the relationship of adjacency between elements. 
A Linear list can be defined as a data object whose instances are of the form (e1, e2, e3…en) 
where n is a finite natural number. The ei terms are the elements of the list and n is its 
length. The elements may be viewed as atomic as their individual structure is not relevant to 
the structure of the list. When n=0, the list is empty. When n>0,e1 is the first element and en 
the last. Ie;e1 comes before e2, e2 comes before e3 and so on. 
Some examples of the Linear List are  

 An alphabetized list of students in a class 

 A list of exam scores in non decreasing order 

 A list of gold medal winners in the Olympics 

 An alphabetized list of members of Congress 
The following are the operations that performed on the Linear List 

 Create a Linear List 
 Destroy a Linear List 
 Determine whether the list is empty 
 Determine the size of the List 
 Find the element with a given index 
 Find the index of a given number 
 Delete, erase or remove an element given its index 
 Insert a new element so that it has a given index 

A Linear List may be specified as an abstract Data type (ADT) in which we provide a 
specification of the instance as well as of the operations that are to be performed. The 
below abstract data type omitted specifying operations to create and destroy instance of 
the data type. All ADT specifications implicitly include an operation to create an empty 
instance and optionally, an operation to destroy an instance. 
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Array Representation: (Formula Based Representation) 
A formula based representation uses an array to represent the instance of an object. Each 
position of the Array is called a Cell or Node and is large enough to hold one of the elements 
that make up an instance, while in other cases one array can represent several instances. 
Individual elements of an instance are located in the array using a mathematical formula. 

Suppose one array is used for each list to be represented. We need to map the 
elements of a list to positions in the array used to represent it. In a formula based 
representation, a mathematical formula determines the location of each element. A simple 
mapping formulas is   
 
 
 

This equation states that the ith element of the list is in position i-1 of the array. The below 
figure shows a five element list represented in the array element using the mapping of 
equation. 
To completely specify the list we need to know its current length or size. For this purpose 
we use variable length. Length is zero when list is empty. Program gives the resulting C++ 
class definition. Since the data type of the list element may vary from application to 
application, we have defined a template class in which the user specifies the element data 
type T. the data members length, MaxSize and element are private members are private 
members, while the remaining members are public. Insert and delete have been defined to 
return a reference to a linear list. 
Insertion and Deletion of a Linear List: 
Suppose we want to remove an element ei from the list by moving to its right down by 1.For 
example, to remove an element e1=2 from the list,we have to move the elements e2=4, 
e3=8,and e4=1,which are to the right of e1, to positions 1,2 and 3 of the array element. The 
below figure shows this result. The shaded elements are moved. 

Location (i) = i-1 
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To insert an element so that it becomes element I of a list, must move the existing element 
ei and all elements to its right one position right and then put the new element into position 
I of the array. For example to insert 7 as the second element of the list, we first move 
elements e2 and e3 to the right by 1 and then put 7 in to second position 2 of the array. The 
below figure shows this result. The shaded elements were moved. 

              
                                 

Linked Representation And Chains 
In a linked list representation each element of an instance of a data object is represented in 
a cell or node. The nodes however need not be component of an array and no formula is 
used to locate individual elements. Instead of each node keeps explicit information about 
the location of other relevant nodes. This explicit information about the location of another 
node is called Link or Pointer. 
Let L=(e1, e2, e3…en) be a linear List. In one possible linked representation for this list, each 
element ei is represented in a separate node. Each node has exactly one link field that is 
used to locate the next element in the linear list. So the node for ei links to that for ei+1, 
0<=i<n-1. The node for en-1 has no need to link to and so its link field is NULL. The pointer 
variables first locate the first node in the representation. The below figure shows the linked 
representation of a List=(e1, e2, e3…en). 

                    

                                                     
Since  each node in the Linked representation of the above figure has exartly one link, the 
structure of this figure is called a ‘Single Linked List’.the nodes are ordered from left to right 
with each node (other than last one) linking to the next,and the last node has a NULL 
link,the structure is also called a chain. 

Insertion and Deletion of a Single Linked List: 
Insertion Let the list be a Linked list with succesive nodes A and B as shown in below 
figure.suppose a node N id to be inserted into the list between the node A and B. 
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In the New list the Node A points to the new Node N and the new node N points to the node 
B to which Node A previously pointed. 
Deletion:  
Let list be a Linked list with node N between Nodes A and B is as shown in the following 
figure. 
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 In the new list the node N is to be deleted from the Linked List. The deletion occurs as the 
link field in the Node A is made to point node B this excluding node N from its path. 

 
DOUBLE LINKED LIST (Or) TWO WAY LINKED LIST 

In certain applications it is very desirable that list be traversed in either forward direction or 
Back word direction. The property of Double Linked List implies that each node must contain 
two link fields instead of one. The links are used to denote the preceding and succeeding of 
the node. The link denoting the preceding of a node is called Left Link. The link denoting 
succeeding of a node is called Right Link. The list contain this type of node is called a 
“Double Linked List” or “Two Way List”. The Node structure in the Double Linked List is as 
follows: 

                              
Lptr contains the address of the before node. Rptr contains the address of next node. Data 
Contains the Linked List is as follows. 

 
In the above diagram Last and Start are pointer variables which contains the address of last 
node and starting node respectively. 
Insertion in to the Double Linked List:Let list be a double linked list with successive modes A 
and B as shown in the following diagram. Suppose a node N is to be inserted into the list 
between the node s A and B this is shown in the following diagram. 
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As in the new list the right pointer of node A points to the new node N ,the Lptr of the node 
‘N’ points to the node A and Rptr of node ‘N’ points to the node ‘B’ and Lpts of node B 
points the new node ‘N’ 
Deletion Of Double Linked List :- Let list be a linked list contains node N between the nodes 
A and B as shown in the following diagram.

 
Support node N is to be deleted from the list diagram will appear as the above mention 
double linked list. The deletion occurs as soon as the right pointer field of node A charged, 
so that it points to node B and the lift point field of node B is changed. So that it pointes to 
node A. 
Circular Linked List:- Circular Linked List is a special type of linked list in which all the nodes 
are linked in continuous circle. Circular list can be singly or doubly linked list. Note that, 
there are no Nulls in Circular Linked Lists. In these types of lists, elements can be added to 
the back of the list and removed from the front in constant time.  
 Both types of circularly-linked lists benefit from the ability to traverse the full list beginning 
at any given node. This avoids the necessity of storing first Node and last node, but we need 
a special representation for the empty list, such as a last node variable which points to some 
node in the list or is null if it's empty. This representation significantly simplifies adding and 
removing nodes with a non-empty list, but empty lists are then a special case.  Circular 
linked lists are most useful for describing naturally circular structures, and have the 
advantage of being able to traverse the list starting at any point. They also allow quick 
access to the first and last records through a single pointer (the address of the last element) 
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Circular single linked list: 

 
Circular linked list are one they of liner linked list. In which the link fields of last node of the 
list contains the address of the first node of the list instead of contains a null pointer. 
Advantages:- Circular list are frequency used instead of ordinary linked list because in 
circular list all nodes contain a valid address. The important feature of circular list is as 
follows. 
(1)         In a circular list every node is accessible from a given node. 
(2)     Certain operations like concatenation and splitting becomes more efficient in circular             
list. 
Disadvantages: Without some conditions in processing it is possible to get into an infinite 
Loop. 
Circular Double Linked List :- These are one type of double linked list. In which the rpt field 
of the last node of the list contain the address of the first node ad the left points of the first 
node contains the address of the last node of the list instead of containing null pointer. 

 
Advantages:- circular list are frequently used instead of ordinary linked list because in 
circular list all nodes contained a valid address. The important feature of circular list is as 
follows. 
(1)         In a circular list every node is accessible from a given node. 
(2)        Certain operations like concatenation and splitting becomes more efficient  
              in circular list. 
Disadvantage:-Without some conditions in processes it is possible to get in to an infant glad. 
 

Difference between single linked list and double linked list? 

Single linked list(SLL) Double linked list(DLL) 

1.In Single Linked List the list will be traversed 
in only one way ie; in forward. 
2. In Single Linked List the node contains one 
link field only. 
3. Every node contains the address of next 
node. 
4.The node structure in Single linked list is as 
follows: 

1. In Double Linked List the list will be 
traversed in two way ie; either forward and 
backward 
2. In Double Linked List the node contains two 
link fields. 
3. Every node contains the address of next 
node as well as preceding node. 
4.the node structure in double linked list is as 
follows: 
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5. The conceptual view of SLL is as follows: 

 
 
6. SLL are maintained in memory by using two 
arrays. 

 

        
5.the conceptual view of DLL is as follows: 

 
 
6. DLL is maintained in memory by using three 
arrays. 

 
 

2. Difference between sequential allocation and linked allocation? 
                                          OR 
Difference between Linear List and Linked List? 
                                        OR 
Difference between Arrays and Linked List? 

Arrays Linked List 

1. Arrays are used in the predictable storage 
requirement ie; exert amount of data 
storage required by the program can be 
determined. 
 
2. In arrays the operations such as insertion 
and deletion are done  in an inefficient 
manner. 
 
 
3. The insertion and deletion are done by 
moving the elements either up or down. 
 
4. Successive elements occupy adjacent 
space on memory. 
 
5. In arrays each location contain DATA only 
6. The linear relation ship between the data 
elements of an array is reflected by the 
physical relation ship of data in the memory. 
 
7. In array declaration a block of memory 
space is required. 
 
8.There is no need of storage of pointer or 
lines  

1. Linked List are used in the unpredictable 
storage requirement ie; exert amount of data 
storage required by the program can’t be 
determined. 
 
2. In Linked List the operations such as 
insertion and deletion are done more 
efficient manner ie; only by changing the 
pointer. 
 
3. The insertion and deletion are done by 
only changing the pointers. 
 
4. Successive elements need not occupy 
adjacent space. 
 
5. In linked list each location contains data 
and pointer to denote whether the next 
element present in the memory. 
 
6. The linear relation ship between the data 
elements of a Linked List is reflected by the  
Linked field of the node. 
 
7. In Linked list there is no need of such 
thing. 
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9.The Conceptual view of an Array is as 
follows: 
 

 
10.In array there is no need for an element 
to specify whether the next is stored 
 

8. In Linked list a pointer is stored along into 
the element. 
9. The Conceptual view of Linked list  is as 
follows: 
 

10. There is need for an element (node) to 
specify whether the next node is formed. 
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UNIT-IV  

SORTING AND SEARCHING 
SORTING-INTRODUCTION 

Sorting is a technique of organizing the data. It is a process of arranging the records, 
either in ascending or descending order i.e. bringing some order lines in the data. Sort 
methods are very important in Data structures. 
Sorting can be performed on any one or combination of one or more attributes present in 
each record. It is very easy and efficient to perform searching, if data is stored in sorting 
order. The sorting is performed according to the key value of each record. Depending up on 
the makeup of key, records can be stored either numerically or alphanumerically. In 
numerical sorting, the records arranged in ascending or descending order according to the 
numeric value of the key. 
Let A be a list of n elements A1, A2, A3 …………………….An in memory. Sorting A refers to the 
operation of rearranging the contents of A so that they are increasing in order, that is, so 
that A1 <=A2 <=A3 <=…………….<=An. Since A has n elements, there are n! Ways that the 
contents can appear in A. these ways corresponding precisely to the n! Permutations of 
1,2,3,………n. accordingly each sorting algorithm must take care of these n! Possibilities. 
 
Ex: suppose an array DATA contains 8elements as follows: 

DATA: 70, 30,40,10,80,20,60,50. 
After sorting DATA must appear in memory as follows: 

DATA: 10 20 30 40 50 60 70 80 
Since DATA consists of 8 elements, there are 8!=40320 ways that the numbers 
10,20,30,40,50,60,70,80 can appear in DATA. 
The factors to be considered while choosing sorting techniques are: 

 Programming Time 

 Execution Time 

 Number of Comparisons 

 Memory Utilization 

 Computational Complexity 
 
Types of Sorting Techniques: 
Sorting techniques are categorized into 2 types. They are Internal Sorting and External 
Sorting. 
Internal Sorting: Internal sorting method is used when small amount of data has to be 
sorted. In this method , the data to be sorted is stored in the main memory (RAM).Internal 
sorting method can access records randomly. EX: Bubble Sort, Insertion Sort, Selection Sort, 
Shell sort, Quick Sort, Radix Sort, Heap Sort etc. 
External Sorting: Extern al sorting method is used when large amount of data has to be 
sorted. In this method, the data to be sorted is stored in the main memory as well as in the 
secondary memory such as disk. External sorting methods an access records only in a 
sequential order. Ex: Merge Sort, Multi way Mage Sort. 
 
Complexity of sorting Algorithms: The complexity of sorting algorithm measures the 
running time as a function of the number n of items to be stored. Each sorting algorithm S 
will be made up of the following operations, where A1, A2, A3 …………………….An contain the 
items to be sorted and B is an auxiliary location. 
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 Comparisons, which test whether Ai < Aj or test whether Ai <B. 

 Interchanges which switch the contents of Ai and Aj or of Ai and B. 

 Assignment which set B: Ai and then set Aj := B or Aj:= Ai 

Normally, the complexity function measures only the number of comparisons, since the 
number of other operations is at most a constant factor of the number of comparisons.  

 

SELECTION SORT 
          In selection sort, the smallest value among the unsorted elements of the array is 
selected in every pass and inserted to its appropriate position into the array. First, find the 
smallest element of the array and place it on the first position. Then, find the second 
smallest element of the array and place it on the second position. The process continues 
until we get the sorted array. The array with n elements is sorted by using n-1 pass of 
selection sort algorithm. 

 In 1st pass, smallest element of the array is to be found along with its index 
pos. then, swap A[0] and A[pos]. Thus A[0] is sorted, we now have n -1 
elements which are to be sorted. 

 In 2nd pas, position pos of the smallest element present in the sub-array A[n-
1] is found. Then, swap, A[1] and A[pos]. Thus A[0] and A[1] are sorted, we 
now left with n-2 unsorted elements. 

 In n-1th pass, position pos of the smaller element between A[n-1] and A[n-2] 
is to be found. Then, swap, A[pos] and A[n-1]. 

 
Therefore, by following the above explained process, the elements A[0], 
A[1], A[2], ... , A[n-1] are sorted. 

 
Example: Consider the following array with 6 elements. Sort the elements of the array by 
using selection sort. 

A = {10, 2, 3, 90, 43, 56}. 

 

 

 

 

Sorted A = {2, 3, 10, 43, 56, 90} 
 

Complexity 

Complexity Best 
Case 

Average Case Worst Case  

Time Ω(n) θ(n2) o(n2)  

Space   o(1)  

 
      

Pass Pos A[0] A[1] A[2] A[3] A[4] A[5] 

1 1 2 10 3 90 43 56 

2 2 2 3 10 90 43 56 

3 3 2 3 10 90 43 56 

4 4 2 3 10 43 90 56 

5 5 2 3 10 43 56 90 
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 Algorithm 
 

SELECTION SORT (ARR, N) 

Step 1: Repeat Steps 2 and 3 for K = 1 to N-1 
 

Step 2: CALL SMALLEST(A, K, N, POS) 
 

Step 3: SWAP A[K] with 
A[POS] [END OF LOOP] 
Step 4: EXIT  

 
 
 

BUBBLE SORT 
Bubble Sort: This sorting technique is also known as exchange sort, which arranges 

values by iterating over the list several times and in each iteration the larger value gets 
bubble up to the end of the list. This algorithm uses multiple passes and in each pass the 
first and second data items are compared. if the first data item is bigger than the second, 
then the two items are swapped. Next the items in second and third position are compared 
and if the first one is larger than the second, then they are swapped, otherwise no change in 
their order. This process continues for each successive pair of data items until all items are 
sorted. 
Bubble Sort Algorithm: 
 Step 1: Repeat Steps 2 and 3 for i=1 to 10  
Step 2: Set j=1  
Step 3: Repeat while j<=n  
              (A) 
                        if a[i] < a[j] Then 
                         interchange a[i] and a[j] 
                         [End of if]  
             (B) Set j = j+1  
                [End of Inner Loop] 
                 [End of Step 1 Outer Loop]  
Step 4: Exit 
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INSERTION SORT 
Insertion sort is one of the best sorting techniques. It is twice as fast as Bubble sort. 

In Insertion sort the elements comparisons are as less as compared to bubble sort. In this 

comparison the value until all prior elements are less than the compared values is not 

found. This means that all the previous values are lesser than compared value. Insertion 

sort is good choice for small values and for nearly sorted values. 
 

Working of Insertion sort: 

The Insertion sort algorithm selects each element and inserts it at its proper position in a 

sub list sorted earlier. In a first pass the elements A1 is compared with A0 and if A[1] and A[0] 
are not sorted they are swapped.  
In the second pass the element[2] is compared  with A[0] and A[1]. And it is inserted at its 
proper position in the sorted sub list containing the elements A[0] and A[1]. Similarly doing  
ith iteration the element A[i] is placed at its proper position in the sorted sub list, containing 
the elements A[0],A[1],A[2],…………A[i-1]. 
To understand the insertion sort consider the unsorted Array A={7,33,20,11,6}. 
 

The steps to sort the values stored in the array in ascending order using Insertion sort are 

given below:  
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7 33 20 11 6 

  
Step 1: The first value i.e;  7 is trivially sorted by itself. 
Step 2: the second value 33 is compared with the first value 7. Since 33 is greater than 7, so 
no changes are made. 
Step 3: Next the third element 20 is compared with its previous element (towards left).Here 
20 is less than 33.but 20 is greater than 7. So it is inserted at second position. For this 33 is 
shifted towards right and 20 is placed at its appropriate position. 
 
 

7 33 20 11 6 

   
 

7 20 33 11 6 

 
Step 4: Then the fourth element 11 is compared with its previous elements. Since 11 is less 
than 33 and 20 ; and greater than 7. So it is placed in between 7 and 20. For this the 
elements 20 and 33 are shifted one position towards the right. 
 

7 20 33 11 6 

 
 

7 11 20 33 6 

Step5:  Finally the last element 6 is compared with all the elements preceding it. Since it is 
smaller than all other elements, so they are shifted one position towards right and 6 is 
inserted at the first position in the array. After this pass, the Array is sorted.  
 
 

7 11 20 33 6 

 
 

6 7 11 20 33 

Step 6: Finally the sorted Array is as follows: 
 

6 7 11 20 33 

 
 
ALGORITHM: 
Insertion_sort(ARR,SIZE) 
Step 1: Set i=1; 
Step 2: while(i<SIZE) 
              Set temp=ARR[i] 

J=i=1; 
While(Temp<=ARR[j] and j>=0) 
Set ARR[j+1]=ARR[i] 
Set j=j-1 
End While 
SET ARR(j+1)=Temp; 
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Print ARR after ith pass 
Set i=i+1 
End while 

Step 3: print no.of passes i-1 
Step 4: end 
Advantages of Insertion Sort: 

 It is simple sorting algorithm, in which the elements are sorted by considering one 
item at a time. The implementation is simple. 

 It is efficient for smaller data set and for data set that has been substantially sorted 
before. 

 It does not change the relative order of elements with equal keys 

 It reduces unnecessary travels through the array 

 It requires constant amount of extra memory space. 
 
Disadvantages:- 

 It is less efficient on list containing more number of elements. 

 As the number of elements increases the performance of program would be slow 
Complexity of Insertion Sort: 
BEST CASE:- 
Only one comparison is made in each pass. 
The Time complexity is O(n2). 
 
WORST CASE:- In the worst case i.e; if the list is arranged in descending order, the number 
of comparisons required by the insertion sort is given by: 
                                1+2+3+……………………….+(n-2)+(n-1)= (n*(n-1))/2; 
                                                                                               = (n2-n)/2. 
  The number of Comparisons are O(n2). 
AVERAGE CASE:- In average case the numer of comparisons is given by 
   
1

2
+

2

2
+

3

3
+ ⋯ +

(n−2)

2
+

(n−1)

2
=  

n∗(n−1)

2∗2
 =(n2-n)/4  = O(n2). 

Program: 
/* Program to implement insertion sort*/ 
#include<iostream.h> 
#include<conio.h> 
main() 
{ 
int a[10],i,j,n,t; 
clrscr(); 
cout<<”\n Enter number of elements to be Sort:”; 
cin>>n; 
cout<<”\n Enter the elements to be Sorted:”; 
for(i=0;i<n;i++) 
cin>>a[i]; 
for(i=0;i<n;i++) 
{  t=a[i]; 
    J=I; 
while((j>0)&&(a[j-1]>t)) 
{  a[j]=a[j-1]; 
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    J=j-1; 
} 
a[j]=t; 
} 
cout<<”Array after Insertion sort:”; 
for(i=0;i<n;i++) 
cout<”\n a[i]”; 
getch();  
} 
OUTPUT: 
Enter number of elements to sot:5 
Enter number of elements to sorted: 7 33 20 11 6 
Array after Insertion sort: 6 7 11 20 33. 
 

QUICK SORT 

                The Quick Sort algorithm follows the principal of divide and Conquer. It first picks 
up the partition element called ‘Pivot’, which divides the list into two sub lists such that all 
the elements in the left sub list are smaller than pivot and all the elements in the right sub 
list are greater than the pivot. The same process is applied on the left and right sub lists 
separately. This process is repeated recursively until each sub list containing more than one 
element.   
Working of Quick Sort: 
The main task in Quick Sort is to find the pivot that partitions the given list into two halves, 
so that the pivot is placed at its appropriate position in the array. The choice of pivot as a 
significant effect on the efficiency of Quick Sort algorithm. The simplest way is to choose the 
first element as the Pivot.  However the first element is not good choice, especially if the 
given list is ordered or nearly ordered .For better efficiency the middle element can be 
chosen as Pivot. 
 
Initially three elements Pivot, Beg and End are taken, such that both Pivot and Beg refers to 
0th position and End refers to the (n-1)th position in the list. The first pass terminates when 
Pivot, Beg and End all refers to the same array element. This indicates that the Pivot 
element is placed at its final position. The elements to the left of Pivot are smaller than this 
element and the elements to it right are greater. 
To understand the Quick Sort algorithm, consider an unsorted array as follows. The steps to 
sort the values stored in the array in the ascending order using Quick Sort are given below. 
 

8 33 6 21 4 

Step 1: Initially the index ‘0’ in the list is chosen as Pivot and the index variable Beg and End 
are initiated with index ‘0’ and (n-1) respectively. 
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Step 2:  The scanning of the element starts from the end of the list. 
A[Pivot]>A[End] 

i.e; 8>4 
so they are swapped. 

 
Step 3: Now the scanning of the elements starts from the beginning of the list. Since 
A[Pivot]>A[Beg]. So Beg is incremented by one and the list remains unchanged. 

 
Step 4: The element A[Pivot] is smaller than A[Beg].So they are swapped. 

 
Step 5: Again the list is scanned form right to left. Since A[Pivot] is smaller than A[End], so 
the value of End is decreased by one and the list remains unchanged. 

 
Step 6: Next the element A[Pivot] is smaller than A[End], the value of End is increased by 
one. and the list remains unchanged. 
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Step 7:      A[Pivot>>A[End] so they are swapped. 

 
 

Step 8: Now the list is scanned from left to right. Since A[Pivot]>A[Beg],value of Beg is 
increased by one and the list remains unchanged. 

 
At this point the variable Pivot, Beg, End all refers to same element, the first pass is 
terminated and the value 8 is placed at its appropriate position. The elements to its left are 
smaller than 8 and the elements to its right are greater than 8.The same process is applied 
on left and right sub lists. 
ALGORITHM 
Step 1: Select first element of array as Pivot 
Step 2: Initialize i and j to Beg and End elements respectively 
Step 3: Increment i until A[i]>Pivot. 
  Stop 
Step 4: Decrement j until A[ j]>Pivot 
  Stop 
Step 5:  if i<j interchange A[i] with A[j]. 
Step 6:  Repeat steps 3,4,5 until i>j i.e: i crossed j. 
Step 7: Exchange the Pivot element with element placed at j, which is correct place for 
Pivot. 
Advantages of Quick Sort: 

 This is fastest sorting technique among all. 

 It efficiency is also relatively good. 

 It requires small amount of memory 
 

Disadvantages: 

 It is somewhat complex method for sorting. 

 It is little hard to implement than other sorting methods 

 It does not perform well in the case of small group of elements. 
 
Complexities of Quick Sort: 
Average Case: The running time complexity is O(n log n). 
Worst Case :  Input array is not evenly divided. So the running time complexity is O(n2 ). 
Best Case: Input array is evenly divided. So the running time complexity is O(n logn). 
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MERGE SORT 

The Merge Sort algorithm is based on the fact that it is easier and faster to sort two 
smaller arrays than one large array. It follows the principle of “Divide and Conquered”. In 
this sorting the list is first divided into two halves. The left and right sub lists obtained are 
recursively divided into two sub lists until each sub list contains not more than one element. 
The sub list containing only one element do not require any sorting. After that merge the 
two sorted sub lists to form a combined list and recursively applies the merging process till 
the sorted array is achieved. 
Let us apply the Merge Sort to sort the following list: 
 

13 42 36 20 63 23 12 

Step 1: First divide the combined list into two sub lists as follows. 

 
Step 2:  Now Divide the left sub list into smaller sub list 

 
Step 3: Similarly divide the sub lists till one element is left in the sub list. 

 
Step 4: Next sort the elements in their appropriate positions and then combined the sub 
lists. 

 
Step 5: Now these two sub lists are again merged to give the following sorted sub list of size 
4. 

 
Step 6: After sorting the left half of the array, containing the same process for the right sub 
list also. Then the sorted array of right half of the list is as follows. 

 
Step 7: Finally the left and right halves of the array are merged to give the sorted array as 
follows. 
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Advantages:  

 Merge sort is stable sort 

 It is easy to understand  

 It gives better performance. 
 
Disadvantages: 

 It requires extra memory space 

 Copy of elements to temporary array 

 It requires additional array 

 It is slow process. 
 
Complexity of Merge Sort: The merge sort algorithm passes over the entire list and requires 
at most log n passes and merges n elements in each pass. The total number of comparisons 
required by the merge sort is given by O(n log n). 
 
External searching: When the records are stored in disk, tape, any secondary storage then 
that searching is known as ‘External Searching’. 
Internal Searching: When the records are to be searched or stored entirely within the 
computer memory then it is known as ‘Internal Searching’. 
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LINEAR SEARCH 
                 The Linear search or Sequential Search is most simple searching method. It does 
not expect the list to be sorted. The Key which to be searched is compared with each 
element of the list one by one. If a match exists, the search is terminated. If the end of the 
list is reached, it means that the search has failed and the Key has no matching element in 
the list. 
Ex: consider the following Array A 
 23 15 18 17 42 96 103 
Now let us search for 17 by Linear search. The searching starts from the first position. 
Since A[0] ≠17. 
The search proceeds to the next position i.e; second position A[1] ≠17. 
The above process continuous until the search element is found such as A[3]=17. 
Here the searching element is found in the position 4. 
 
Algorithm:  LINEAR(DATA, N,ITEM, LOC) 
Here DATA is a linear Array with N elements. And ITEM is a given item of information. This 
algorithm finds the location LOC of an ITEM in DATA. LOC=-1 if the search is unsuccessful. 
Step 1:   Set DATA[N+1]=ITEM 
Step 2: Set LOC=1 
Step 3: Repeat while (DATA [LOC] != ITEM) 
        Set LOC=LOC+1 
Step 4: if LOC=N+1 then 
 Set LOC= -1. 
Step 5: Exit 
 
Advantages: 

 It is simplest known technique. 

 The elements in the list can be in any order. 
Disadvantages:  
This method is in efficient when large numbers of elements are present in list because time 
taken for searching is more. 
Complexity of Linear Search: The worst and average case complexity of Linear search is 
O(n), where ‘n’ is the total number of elements present in the list. 

 
BINARY SEARCH 

Suppose DATA is an array which is stored in increasing order then there is an extremely 
efficient searching algorithm called “Binary Search”. Binary Search can be used to find the 
location of the given ITEM of information in DATA. 
Working of Binary Search Algorithm: 
During each stage of algorithm search for ITEM is reduced to a segment of elements of 
DATA[BEG], DATA[BEG+1], DATA[BEG+2],……………………… DATA[END]. 
Here BEG and END denotes beginning and ending locations of the segment under 
considerations. The algorithm compares ITEM with middle element DATA[MID] of a 
segment, where MID=[BEG+END]/2. If DATA[MID]=ITEM then the search is successful. and 
we said that LOC=MID. Otherwise a new segment of data is obtained as follows: 

i. If ITEM<DATA[MID] then item can appear only in the left half of the segment. 
DATA[BEG], DATA[BEG+1], DATA[BEG+2] 
So we reset END=MID-1. And begin the search again. 
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ii. If ITEM>DATA[MID] then ITEM can appear only in right half of the segment i.e. 
DATA[MID+1], DATA[MID+2],……………………DATA[END]. 

       So we reset BEG=MID+1. And begin the search again. 
Initially we begin with the entire array DATA i.e. we begin with BEG=1 and END=n 
Or 
 BEG=lb(Lower Bound) 
END=ub(Upper Bound) 
If ITEM is not in DATA then eventually we obtained END<BEG. This condition signals that the 
searching is Unsuccessful.  
The precondition for using Binary Search is that the list must be sorted one. 
Ex: consider a list of sorted elements stored in an Array A is 

 
Let the key element which is to be searched is 35. 
Key=35 
The number of elements in the list n=9. 
Step 1: MID= [lb+ub]/2 
                       =(1+9)/2 

          =5 

 
Key<A[MID] 
i.e. 35<46. 
So search continues at lower half of the array. 
Ub=MID-1 
     =5-1 
    = 4. 

 
Step 2: MID= [lb+ub]/2 
                       =(1+4)/2 

          =2. 

 
Key>A[MID] 

i.e. 35>12. 
So search continues at Upper Half of the array. 
Lb=MID+1 
     =2+1 
    = 3. 
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Step 3: MID= [lb+ub]/2 
                       =(3+4)/2 

          =3. 

 
Key>A[MID] 
i.e. 35>30. 
So search continues at Upper Half of the array. 
Lb=MID+1 
     =3+1 
    = 4. 

Step 4: MID= [lb+ub]/2 
                       =(4+4)/2 

          =4. 

 
ALGORITHM:  
BINARY SEARCH[A,N,KEY] 
Step 1: begin 
Step 2: [Initilization] 
 Lb=1; ub=n; 
Step 3: [Search for the ITEM] 
 

Repeat through step 4,while Lower bound is less than Upper Bound. 
Step 4: [Obtain the index of middle value] 
 MID=(lb+ub)/2 
Step 5: [Compare to search for ITEM] 
 If Key<A[MID] then 
 Ub=MID-1 
 Other wise if Key >A[MID] then  

Lb=MID+1 
Otherwise write “Match Found” 
Return Middle. 

Step 6: [Unsuccessful Search] 
 write “Match Not Found” 
Step 7: Stop. 
 
Advantages: When the number of elements in the list is large, Binary Search executed faster 
than linear search. Hence this method is efficient when number of elements is large. 
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Disadvantages: To implement Binary Search method the elements in the list must be in 
sorted order, otherwise it fails. 
 
Define sorting? What is the difference between internal and external sorting methods? 
Ans:- Sorting is a technique of organizing data. It is a process of arranging the elements 
either may be ascending or descending order, ie; bringing some order lines with data. 
  

Internal sorting External sorting 

1. Internal Sorting takes place in the main 
memory of a computer. 

1. External sorting is done with additional 
external memory  like magnetic tape or hard 
disk 

2. The internal sorting methods are applied 
to small collection of data. 

2. The External sorting methods are applied 
only when the number of data elements to 
be sorted is too large. 

3. Internal sorting takes small input 3. External sorting can take as much as large 
input. 

4. It means that, the entire collection of data 
to be sorted in small enough that the sorting 
can take place within main memory. 

4. External sorting typically uses a sort-
merge strategy, and requires auxiliary 
storage.  

5. For sorting larger datasets, it may be 
necessary to hold only a chunk of data in 
memory at a time, since it wont all fit. 

5. In the sorting phase, chunks of data small 
enough to fit in main memory are read, 
sorted, and written out to a temporary file. 

6. Example of Internal Sorting algorithms are 
:- Bubble Sort, Internal Sort, Quick Sort, 
Heap Sort, Binary Sort, Radix Sort, Selection 
sort. 

6. Example of External sorting algorithms 
are: - Merge Sort, Two-way merge sort. 

7. Internal sorting does not make use of 
extra resources.  

7. External sorting make use of extra 
resources. 

 
 Justify the fact that the efficiency of Quick sort is O(nlog n) under best case? 
Ans:-   Best Case:- 

The best case in quick sort arises when the pivot element divides the lists into two exactly 
equal sub lists. Accordingly  
i)  Reducing the initial list places '1' element and produces two equal sub lists. 
ii)  Reducing the two sub lists places '2' elements and produces four equal sub lists and son 
on. 
                        Observe that the reduction step in the k th level finals the location of 2(k-1) 
elements, hence there will be approximately log n levels of reduction. Further, each level 
uses at most 'n' comparisons, So f(n) = O(n log n).Hence the efficiency of quick sort 
algorithm is O(nlog n) under the best case. 
 
Mathematical Proof:-     Hence from the above, the recurrence relation for quick sort under 
best case is given by 
                              T(n)=2T(n/2) + kn 
               By using substitution method , we get 
  T(n)=2T(n/2)+Kn 
          =2{ 2T(n/4)+k.n/2}+kn 
        =4T(n/4) + 2kn 
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   . 
   . 
   . 
  In general 
  T(n)= 2kT(n/2k) + akn // after k substitutions 
   The above recurrence relation continues until n=2k , k=logn  
By substituting the above values , we get 
  T(n) is O(nlogn) 
 
                                 Quick sort, or partition-exchange sort, is a sorting algorithm that, on 
average, makes O(n log n) comparisons to sort n items. In the worst case, it makes O(n2) 
comparisons, though this behavior is rare. Quick sort is often faster in practice than other 
O(n log n) algorithms. Additionally, quick sort’s sequential and localized memory references 
work well with a cache. Quick sort is a comparison sort and, in efficient implementations, is 
not a stable sort. Quick sort can be implemented with an in-place partitioning algorithm, so 
the entire sort can be done with only O(log n) additional space used by the stack during the 
recursion. Since each element ultimately ends up in the correct position, the algorithm 
correctly sorts. But how long does it take. 
                           The best case for divide-and-conquer algorithms comes when we split the 
input as evenly as possible. Thus in the best case, each sub problem is of size n/2.The 
partition step on each sub problem is linear in its size. Thus the total effort in partitioning 
the 2k problems of size  n/2k  is O(n). 
The recursion tree for the best case looks like this: 
  

                                      
 
The total partitioning on each level is O(n), and it take log n  levels of perfect partitions to 
get to single element sub problems. When we are down to single elements, the problems 
are sorted. Thus the total time in the best case is O(nlogn)  . 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Sorting_algorithm
http://en.wikipedia.org/wiki/Best,_worst_and_average_case
http://en.wikipedia.org/wiki/Best,_worst_and_average_case
http://en.wikipedia.org/wiki/Best,_worst_and_average_case
http://en.wikipedia.org/wiki/CPU_cache
http://en.wikipedia.org/wiki/Comparison_sort
http://en.wikipedia.org/wiki/Stable_sort
http://en.wikipedia.org/wiki/In-place_algorithm
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UNIT-V 
TREES AND BINARY TREES 

 

TREES 

INTRODUCTION  
In linear data structure data is organized in sequential order and in non-linear data structure 
data is organized in random order. A tree is a very popular non-linear data structure used in 
a wide range of applications. Tree is a non-linear data structure which organizes data in 
hierarchical structure and this is a recursive definition. 
DEFINITION OF TREE: 
Tree is collection of nodes (or) vertices and their edges (or) links. In tree data structure, 
every individual element is called as Node. Node in a tree data structure stores the actual 
data of that particular element and link to next element in hierarchical structure.  

 

Note: 1. In a Tree, if we have N number of nodes then we can have a maximum of N-
1 number of links or edges. 
2. Tree has no cycles. 
TREE TERMINOLOGIES: 
1. Root Node: In a Tree data structure, the first node is called as Root Node. Every tree 
must have a root node. We can say that the root node is the origin of the tree data 
structure. In any tree, there must be only one root node. We never have multiple root 
nodes in a tree. 

 
2. Edge: In a Tree, the connecting link between any two nodes is called as EDGE. In a tree 
with 'N' number of nodes there will be a maximum of 'N-1' number of edges. 
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3. Parent Node: In a Tree, the node which is a predecessor of any node is called as PARENT 
NODE. In simple words, the node which has a branch from it to any other node is called a 
parent node. Parent node can also be defined as "The node which has child / children". 

 
Here, A is parent of B&C. B is the parent of D,E&F and so on… 
4. Child Node: In a Tree data structure, the node which is descendant of any node is called 
as CHILD Node. In simple words, the node which has a link from its parent node is called as 
child node. In a tree, any parent node can have any number of child nodes. In a tree, all the 
nodes except root are child nodes. 

 
5. Siblings: In a Tree data structure, nodes which belong to same Parent are called 
as SIBLINGS. In simple words, the nodes with the same parent are called Sibling nodes. 
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6. Leaf Node:  In a Tree data structure, the node which does not have a child is called 
as LEAF Node. In simple words, a leaf is a node with no child. In a tree data structure, the 
leaf nodes are also called as External Nodes. External node is also a node with no child. In a 
tree, leaf node is also called as 'Terminal' node. 

 
 

7. Internal Nodes: In a Tree data structure, the node which has atleast one child is called 
as INTERNAL Node. In simple words, an internal node is a node with atleast one child.  
 
In a Tree data structure, nodes other than leaf nodes are called as Internal Nodes. The root 
node is also said to be Internal Node if the tree has more than one node. Internal nodes are 
also called as 'Non-Terminal' nodes. 

 
8. Degree: In a Tree data structure, the total number of children of a node is called 
as DEGREE of that Node. In simple words, the Degree of a node is total number of children it 
has. The highest degree of a node among all the nodes in a tree is called as 'Degree of Tree' 
 

 
Degree of Tree is: 3 
 

9. Level: In a Tree data structure, the root node is said to be at Level 0 and the children of 
root node are at Level 1 and the children of the nodes which are at Level 1 will be at Level 2 
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and so on... In simple words, in a tree each step from top to bottom is called as a Level and 
the Level count starts with '0' and incremented by one at each level (Step). 
 

 

10. Height: In a Tree data structure, the total number of edges from leaf node to a particular 
node in the longest path is called as HEIGHT of that Node. In a tree, height of the root node 
is said to be height of the tree. In a tree, height of all leaf nodes is '0'. 
 

 
11. Depth: In a Tree data structure, the total number of egdes from root node to a 
particular node is called as DEPTH of that Node. In a tree, the total number of edges from 
root node to a leaf node in the longest path is said to be Depth of the tree. In simple words, 
the highest depth of any leaf node in a tree is said to be depth of that tree. In a tree, depth 
of the root node is '0'. 

 

12. Path: In a Tree data structure, the sequence of Nodes and Edges from one node to 
another node is called as PATH between that two Nodes. Length of a Path is total number 
of nodes in that path. In below example the path A - B - E - J has length 4. 
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13. Sub Tree: In a Tree data structure, each child from a node forms a subtree recursively. 
Every child node will form a subtree on its parent node. 

 

TREE REPRESENTATIONS: 

A tree data structure can be represented in two methods. Those methods are as follows... 

1. List Representation 
2. Left Child - Right Sibling Representation 

Consider the following tree... 

 

1. List Representation 

In this representation, we use two types of nodes one for representing the node with data 
called 'data node' and another for representing only references called 'reference node'. We 
start with a 'data node' from the root node in the tree. Then it is linked to an internal node 
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through a 'reference node' which is further linked to any other node directly. This process 
repeats for all the nodes in the tree. 

The above example tree can be represented using List representation as follows... 

 

2. Left Child - Right Sibling Representation 

In this representation, we use a list with one type of node which consists of three fields 
namely Data field, Left child reference field and Right sibling reference field. Data field 
stores the actual value of a node, left reference field stores the address of the left child and 
right reference field stores the address of the right sibling node. Graphical representation of 
that node is as follows... 

 
In this representation, every node's data field stores the actual value of that node. If that node has 

left a child, then left reference field stores the address of that left child node otherwise stores NULL. 

If that node has the right sibling, then right reference field stores the address of right sibling node 

otherwise stores NULL.  

 

The above example tree can be represented using Left Child - Right Sibling representation as 

follows... 

 

BINARY TREE: 

In a normal tree, every node can have any number of children. A binary tree is a special type 
of tree data structure in which every node can have a maximum of 2 children. One is known 
as a left child and the other is known as right child. 

A tree in which every node can have a maximum of two children is called Binary Tree. 
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In a binary tree, every node can have either 0 children or 1 child or 2 children but not more 

than 2 children. 

In general, tree nodes can have any number of children. In a binary tree, each node can 

have at most two children. A binary tree is either empty or consists of a node called the root 

together with two binary trees called the left subtree and the right subtree.  A tree with no 

nodes is called as a null tree 

Example: 

 

 

TYPES OF BINARY TREE: 
1. Strictly Binary Tree: 
In a binary tree, every node can have a maximum of two children. But in strictly binary tree, 
every node should have exactly two children or none. That means every internal node must 
have exactly two children. A strictly Binary Tree can be defined as follows... 

A binary tree in which every node has either two or zero number of children is called 
Strictly Binary Tree 

Strictly binary tree is also called as Full Binary Tree or Proper Binary Tree or 2-Tree. 

 

Strictly binary tree data structure is used to represent mathematical expressions. 
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Example 

 

2. Complete Binary Tree: 

In a binary tree, every node can have a maximum of two children. But in strictly binary tree, 
every node should have exactly two children or none and in complete binary tree all the 
nodes must have exactly two children and at every level of complete binary tree there must 
be 2level number of nodes. For example at level 2 there must be 22 = 4 nodes and at level 3 
there must be 23 = 8 nodes. 

A binary tree in which every internal node has exactly two children and all leaf nodes are 
at same level is called Complete Binary Tree. 

 

Complete binary tree is also called as Perfect Binary Tree. 

 

3. Extended Binary Tree: 

A binary tree can be converted into Full Binary tree by adding dummy nodes to existing 
nodes wherever required. 

The full binary tree obtained by adding dummy nodes to a binary tree is called as 
Extended Binary Tree. 
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In above figure, a normal binary tree is converted into full binary tree by adding dummy 
nodes. 
4. Skewed Binary Tree: 
If a tree which is dominated by left child node or right child node, is said to be a Skewed 
Binary Tree. 
In a skewed binary tree, all nodes except one have only one child node. The remaining 
node has no child. 

 

 
In a left skewed tree, most of the nodes have the left child without corresponding right 
child. 
In a right skewed tree, most of the nodes have the right child without corresponding left 
child. 
 Properties of binary trees:  
 Some of the important properties of a binary tree are as follows:  
 1. If h = height of a binary tree, then  

 a. Maximum number of leaves = 2h  
 b. Maximum number of nodes = 2h + 1 - 1  

 2. If a binary tree  contains m nodes at level l, it contains at most 2m nodes at level l + 1.   
 3. Since a binary tree can contain at most one node at level 0 (the root), it can contain at 
most 2l node at level l.   
 4. The total number of edges in a full binary tree with n node is n – 
 BINARY TREE REPRESENTATIONS: 
A binary tree data structure is represented using two methods. Those methods are as 
follows... 

1. Array Representation 
2. Linked List Representation 

Consider the following binary tree... 
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1. Array Representation of Binary Tree 
In array representation of a binary tree, we use one-dimensional array (1-D Array) to 
represent a binary tree. 
Consider the above example of a binary tree and it is represented as follows... 

 
To represent a binary tree of depth 'n' using array representation, we need one dimensional 
array with a maximum size of 2n + 1. 
2. Linked List Representation of Binary Tree 
We use a double linked list to represent a binary tree. In a double linked list, every node 
consists of three   fields.  First field for storing left child address, second for storing actual 
data and third for the right child address. 
In this linked list representation, a node has the following structure... 

 
The above example of the binary tree represented using Linked list representation is shown 
as follows... 

 
BINARY TREE TRAVERSALS: 
Unlike linear data structures (Array, Linked List, Queues, Stacks, etc) which have only one 
logical way to traverse them, binary trees can be traversed in different ways. Following are 
the generally used ways for traversing binary trees. 
When we wanted to display a binary tree, we need to follow some order in which all the 
nodes of that binary tree must be displayed. In any binary tree, displaying order of nodes 
depends on the traversal method. 
Displaying (or) visiting order of nodes in a binary tree is called as Binary Tree Traversal. 
There are three types of binary tree traversals. 

1. In - Order Traversal 
2. Pre - Order Traversal 
3. Post - Order Traversal 

1. In - Order Traversal (left Child - root - right Child): 
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In In-Order traversal, the root node is visited between the left child and right child. In this 
traversal, the left child node is visited first, then the root node is visited and later we go for 
visiting the right child node. This in-order traversal is applicable for every root node of all 
sub trees in the tree. This is performed recursively for all nodes in the tree. 
Algorithm: 
Step-1: Visit the left subtree, using inorder.  
Step-2: Visit the root. 
Step-3: Visit the right subtree, using inorder.  

 
In the above example of a binary tree, first we try to visit left child of root node 'A', but A's 
left child 'B' is a root node for left subtree. so we try to visit its (B's) left child 'D' and again D 
is a root for subtree with nodes D, I and J. So we try to visit its left child 'I' and it is the 
leftmost child. So first we visit 'I' then go for its root node 'D' and later we visit D's right 
child 'J'. With this we have completed the left part of node B. Then visit 'B' and next B's right 
child 'F' is visited. With this we have completed left part of node A. Then visit root node 'A'. 
With this we have completed left and root parts of node A. Then we go for the right part of 
the node A. In right of A again there is a subtree with root C. So go for left child of C and 
again it is a subtree with root G. But G does not have left part so we visit 'G' and then visit 
G's right child K. With this we have completed the left part of node C. Then visit root 
node 'C' and next visit C's right child 'H' which is the rightmost child in the tree. So we stop 
the process. 
That means here we have visited in the order of I - D - J - B - F - A - G - K - C - H using In-
Order Traversal. 
2. Pre - Order Traversal ( root - leftChild - rightChild ): 
In Pre-Order traversal, the root node is visited before the left child and right child nodes. In 
this traversal, the root node is visited first, then its left child and later its right child. This pre-
order traversal is applicable for every root node of all subtrees in the tree. Preorder search 
is also called backtracking. 
Algorithm: 
Step-1: Visit the root.  
Step-2: Visit the left subtree, using preorder. 
Step-3: Visit the right subtree, using preorder. 
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In the above example of binary tree, first we visit root node 'A' then visit its left 
child 'B' which is a root for D and F. So we visit B's left child 'D' and again D is a root for I and 
J. So we visit D's left child 'I' which is the leftmost child. So next we go for visiting D's right 
child 'J'. With this we have completed root, left and right parts of node D and root, left parts 
of node B. Next visit B's right child 'F'. With this we have completed root and left parts of 
node A. So we go for A's right child 'C' which is a root node for G and H. After visiting C, we 
go for its left child 'G' which is a root for node K. So next we visit left of G, but it does not 
have left child so we go for G's right child 'K'. With this, we have completed node C's root 
and left parts. Next visit C's right child 'H' which is the rightmost child in the tree. So we stop 
the process. 
That means here we have visited in the order of A-B-D-I-J-F-C-G-K-H using Pre-Order 
Traversal. 
3. Post - Order Traversal ( leftChild - rightChild - root ): 
In Post-Order traversal, the root node is visited after left child and right child. In this 
traversal, left child node is visited first, then its right child and then its root node. This is 
recursively performed until the right most nodes are visited. 
Algorithm: 
Step-1: Visit the left subtree, using postorder.  
Step-2: Visit the right subtree, using postorder  
Step-3: Visit the root. 

 
 
Here we have visited in the order of I - J - D - F - B - K - G - H - C - A using Post-Order 
Traversal. 
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PROGRAMS ON DATA STRUCTURES 
 

1. Write a C program to implement stack using arrays. 

2. Write a C program to implement queue using arrays. 

3. Write a C program implement the following  Stack applications 

a) infix into postfix  

b) Evaluation of the postfix expression 

4. Write a C program to implement the following types of queues 

a) Priority queue 

b) Circular queue 

5. Write a C program to implement the Singly Linked List 

6. Write a C program to implement the doubly Linked List 

7. Write a C program to implement the following search algorithms. 

      i) Linear search   ii) Binary search iii) Fibonacci search 

8. Write a C program to implement the sorting algorithms. 

9. Write a C   program to implement binary tree using arrays and to perform binary          

traversals. 

      i) Inorder  ii) preorder  iii) post order 

10. Write a C program to balance a given tree. 
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TREES 

A Tree is a data structure in which each element is attached to one or more elements directly beneath it. 

 
 

Level 0 
 
 
 
 
 
 
 

1 
 
 
 

 

2 

3 

 
Terminology 

 The connections between elements are called branches. 

 A tree has a single root, called root node, which is shown at the top of the tree. i.e. root is always  
at the highest level 0. 

 Each node has exactly one node above it, called parent. Eg: A is the parent of B,C and D. 

 The nodes just below a node are called its children. ie. child nodes are one level lower than the 
parent node. 

 A node which does not have any child called leaf or terminal node. Eg: E, F, K, L, H, I and M are 

 lNeaovdes.with at least one child are called non terminal or internal nodes. 

 The child nodes of same parent are said to be siblings. 

 A path in a tree is a list of distinct nodes in which successive nodes are connected by branches in 
the tree. 

 The length of a particular path is the number of branches in that path. The degree of a node 
of a tree is the number of children of that node. 

 The maximum number of children a node can have is often referred to as the order of a 
tree. The height or depth of a tree is the length of the longest path from root to any leaf. 

 
1. Root: This is the unique node in the tree to which further sub trees are attached. Eg: A 
Degree of the node: The total number of sub-trees attached to the node is called the degree of the 
node.Eg: For node A degree is 3. For node K degree is 0 

3. Leaves: These are the terminal nodes of the tree. The nodes with degree 0 are always the leaf nodes. 

Eg: E, F, K, L,H, I, J 

 

  Binary Search Trees: Various Binary tree representation, definition, BST ADT, Implementation,  
  Operations- Searching, Insertion and Deletion, Binary tree traversals,  threaded binary trees, 
  AVL Trees : Definition, Height of an AVL Tree, Operations – Insertion, Deletion and Searching 
  B-Trees: B-Tree of order m, height of a B-Tree, insertion, deletion and searching, B+ Tree. 
 

A 

B 
C D 

E F G 

H I J 

K L 
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4. Internal nodes: The nodes other than the root node and the leaves are called the internal nodes. Eg: 

B, C, D, G 

5. Parent nodes: The node which is having further sub-trees(branches) is called the parent node of 

those sub-trees. Eg: B is the parent node of E and F. 

6. Predecessor: While displaying the tree, if some particular node occurs previous to some other node 

then that node is called the predecessor of the other node. Eg: E is the predecessor of the node B. 

7. Successor: The node which occurs next to some other node is a successor node. Eg: B is the 

successor of E and F. 

8. Level of the tree: The root node is always considered at level 0, then its adjacent children are 

supposed to be at level 1 and so on. Eg: A is at level 0, B,C,D are at level 1, E,F,G,H,I,J are at level 2, 

K,L are at level 3. 

9. Height of the tree: The maximum level is the height of the tree. Here height of the tree is 3. The 

height if the tree is also called depth of the tree. 

10. Degree of tree: The maximum degree of the node is called the degree of the tree. 

BINARY TREES 

 
Binary tree is a tree in which each node has at most two children, a left child and a right child. Thus the 
order of binary tree is 2. 

 
A binary tree is either empty or consists 
of a) a node called the root 
b) left and right sub trees are themselves binary trees. 

 
A binary tree is a finite set of nodes which is either empty or consists of a root and two disjoint 

trees called left sub-tree and right sub-tree. 

In binary tree each node will have one data field and two pointer fields for representing the 
sub-branches. The degree of each node in the binary tree will be at the most two. 

 

Types Of Binary Trees: 

There are 3 types of binary trees: 

 
1. Left skewed binary tree: If the right sub-tree is missing in every node of a tree we call it as left 

skewed tree. 

 

A 

B 

C 
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2. Right skewed binary tree: If the left sub-tree is missing in every node of a tree we call it is right 
sub-tree. 

 
 
 
 
 
 
 
 
 
 

3. Complete binary tree: 

The tree in which degree of each node is at the most two is called a complete binary tree. In 
a complete binary tree there is exactly one node at level 0, two nodes at level 1 and four nodes at level 

2 and so on. So we can say that a complete binary tree depth d will contain exactly 2
l 
nodes at each 

level l, where l is from 0 to d. 
 
 
 
 
 
 
 
 
 
 
 

Note: 

1. A binary tree of depth n will have maximum 2
n
-1 nodes. 

2. A complete binary tree of level l will have maximum 2l nodes at each level, where l starts from 0. 
3. Any binary tree with n nodes will have at the most n+1 null branches. 
4. The total number of edges in a complete binary tree with n terminal nodes are 2(n-1). 

 
Binary Tree Representation 

A binary tree can be represented mainly in 2 ways: 
 

a) Sequential Representation 
b) Linked Representation 

 
a) Sequential Representation 

The simplest way to represent binary trees in memory is the sequential representation that uses one- 
dimensional array. 

1) The root of binary tree is stored in the 1 st location of array 

2) If a node is in the j 
th 

location of array, then its left child is in the location 2J+1 and its right 
child in the location 2J+2 

The maximum size that is required for an array to store a tree is 2
d+1

-1, where d is the depth of the tree. 

A 

B 

C 

A 

B C 

D E F G 
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Advantages of sequential representation: 

The only advantage with this type of representation is that the 
direct access to any node can be possible and finding the parent or left children of any particular node 
is fast because of the random access. 

 
Disadvantages of sequential representation: 

1. The major disadvantage with this type of representation is wastage of memory. For example in 
the skewed tree half of the array is unutilized. 

2. In this type of representation the maximum depth of the tree has to be fixed. Because we have 
decide the array size. If we choose the array size quite larger than the depth of the tree, then it 
will be wastage of the memory. And if we coose array size lesser than the depth of the tree then 
we will be unable to represent some part of the tree. 

3. The insertions and deletion of any node in the tree will be costlier as other nodes has to be 
adjusted at appropriate positions so that the meaning of binary tree can be preserved. 

As these drawbacks are there with this sequential type of representation, we will search for more 
flexible representation. So instead of array we will make use of linked list to represent the tree. 
b) Linked Representation 

Linked representation of trees in memory is implemented using pointers. Since each node in a 
binary tree can have maximum two children, a node in a linked representation has two pointers for both 
left and right child, and one information field. If a node does not have any child, the corresponding 
pointer field is made NULL pointer. 

 
In linked list each node will look like this: 

 

Left Child Data Right Child 
Advantages of linked representation: 

1. This representation is superior to our array representation as there is no wastage of 
memory. And so there is no need to have prior knowledge of depth of the tree. 
Using dynamic memory concept one can create as much memory(nodes) as 
required. By chance if some nodes are unutilized one can delete the nodes by 
making the address free. 

 
2. Insertions and deletions which are the most common operations can be done without 

moving the nodes. 
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Disadvantages of linked representation: 
 

1. This representation does not provide direct access to a node and special algorithms are 
required. 

2. This representation needs additional space in each node for storing the left and right sub- 
trees. 

 
TRAVERSING A BINARY TREE 

 

Traversing a tree means that processing it so that each node is visited exactly once. A binary 
tree can be 
traversed a number of ways.The most common tree traversals are 

 
 In-order 
 Pre-order and 
 Post-order 

 
Pre-order 1.Visit the root Root | Left | Right 

 2.Traverse the left sub tree in pre-order  

 

In-order 
3.Traverse the right sub tree in pre-order. 
1.Traverse the left sub tree in in-order 

 

Left | Root | Right 
 2.Visit the root  

 
 

3.Traverse the right sub tree in in-order.  

Post-order 1.Traverse the left sub tree in post-order Left | Right | Root 
 2.Traverse the right sub tree in post-order.  

 3.Visit the root  

 
A 

 
B C 

 

D E F G 
 

 
H I J 

 

 

K 

The pre-order traversal is: ABDEHCFGIKJ 
The in-order traversal is : DBHEAFCKIGJ 
The post-order traversal is:DHEBFKIJGCA 
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Inorder Traversal: 

Print 3
rd

 

A 
 

Print 2
nd 

Print 4
th

 

B D 
 
 
 

 
Print 1

st
 

C Print this 
E

 
at the last 

 

C-B-A-D-E is the inorder traversal i.e. first we go towards the leftmost node. i.e. C so print that node 
C. Then go back to the node B and print B. Then root node A then move towards the right sub-tree 
print D and finally E. Thus we are following the tracing sequence of Left|Root|Right. This type of 
traversal is called inorder traversal. The basic principle is to traverse left sub-tree then root and then the 
right sub-tree. 

 

Pseudo Code: 
 

template <class T> 
void inorder(bintree<T> *temp) 
{ 

if(temp!=NULL) 
{ 

inorder(temp->left); 
cout<<”temp->data”; 
inorder(temp->right); 

} 
} 

is the preorder traversal of the above fig. We are following Root|Left|Right path i.e. data at the 
root node will be printed first then we move on the left sub-tree and go on printing the data till 
we reach to the left most node. Print the data at that node and then move to the right sub- tree. 
Follow the same principle at each sub-tree and go on printing the data accordingly. 

 
template <class T> 
void preorder(bintree<T> *temp) 
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{ 
if(temp!=NULL) 
{ 

cout<<”temp->data”; preorder(temp->left); 
preorder(temp->right); 

} 
} 

 

 

From figure the postorder traversal is C-D-B-E-A. In the postorder traversal we are following the 
Left|Right|Root principle i.e. move to the leftmost node, if right sub-tree is there or not if not then 
print the leftmost node, if right sub-tree is there move towards the right most node. The key idea 
here is that at each sub-tree we are following the Left|Right|Root principle and print the data 
accordingly. 
Pseudo Code: 

 
template <class T> 
void postorder(bintree<T> *temp) 
{ 

if(temp!=NULL) 
{ 

postorder(temp->left); 
postorder(temp->right); 
cout<<”temp->data”; 

} 
} 

 
 
 

BINARY SEARCH TREE 
In the simple binary tree the nodes are arranged in any fashion. Depending on user’s desire 

the new nodes can be attached as a left or right child of any desired node. In such a case finding for 
any node is a long cut procedure, because in that case we have to search the entire tree. And thus 
the searching time complexity will get increased unnecessarily. So to make the  searching 
algorithm faster in a binary tree we will go for building the binary search tree. The binary search 
tree is based on the binary search algorithm. While creating the binary search tree the data is 
systematically arranged. That means values at left sub-tree < root node value < right sub-tree 

values. 
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Operations On Binary Search Tree: 

The basic operations which can be performed on binary search tree are. 
1. Insertion of a node in binary search tree. 
2. Deletion of a node from binary search tree. 
3. Searching for a particular node in binary search tree. 

Insertion of a node in binary search tree. 

While inserting any node in binary search tree, look for its appropriate position in the binary search 
tree. We start comparing this new node with each node of the tree. If the value of the node which is 
to be inserted is greater than the value of the current node we move on to the right sub-branch 
otherwise we move on to the left sub-branch. As soon as the appropriate position is found we 
attach this new node as left or right child appropriately. 

 

 
 
 

Before Insertion 
 

In the above fig, if we wan to insert 23. Then we will start comparing 23 with value of root node 
i.e. 10. As 23 is greater than 10, we will move on right sub-tree. Now we will compare 23 with 20 
and  move right, compare 23 with 22 and  move right. Now compare 23 with 24  but  it  is less than 
24. We will move on left branch of 24. But as there is node as left child of 24, we can attach 23 as 
left child of 24. 
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Deletion of a node from binary search tree. 

For deletion of any node from binary search tree there are three which are possible. 
i. Deletion of leaf node. 
ii. Deletion of a node having one child. 
iii. Deletion of a node having two children. 

Deletion of leaf node. 
 

This is the simplest deletion, in which we set the left or right pointer of parent node as NULL. 

 
10 

 
 
 
 

 
Before deletion 

7 15 

 
 

 

5 9 12 18 

 
 
 
 

 
From the above fig, we want to delete the node having value 5 then we will set left pointer of its parent 
node as NULL. That is left pointer of node having value 7 is set to NULL. 

 
 

 

 
Deletion of a node having one child. 
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To explain this kind of deletion, consider a tree as given below. 

 
 

If we want to delete the node 15, then we 
will simply copy node 18 at place of 16 
and then set the node free 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
Deletion of a node having two children. 

Consider a tree as given below. 
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Let us consider that we want to delete node having value 7. We will then find out the inorder successor 
of node 7. We will then find out the inorder successor of node 7. The inorder successor will be simply 
copied at location of node 7. 

That means copy 8 at the position where value of node is 7. Set left pointer of 9 as NULL. This 
completes the deletion procedure. 

 
 
 

 
 

 

Searching for a node in binary search tree. 

In searching, the node which we want to search is called a key node. The key node will be compared 
with each node starting from root node if value of key node is greater than current node then we 
search for it on right sub branch otherwise on left sub branch. If we reach to leaf node and still we do 
not get the value of key node then we declare “node is not present in the tree”. 
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In the above tree, if we want to search for value 9. Then we will compare 9 with root node 10. As 9 is 
less than 10 we will search on left sub branch. Now compare 9 with 5, but 9 is greater than 5. So we 
will move on right sub tree. Now compare 9 with 8 but 9 is greater than 8 we will move on right sub 
branch. As the node we will get holds the value 9. Thus the desired node can be searched. 

 
AVL TREES 

 
Adelsion Velski and Lendis in 1962 introduced binary tree structure that is balanced with 
respect to height of sub trees. The tree can be made balanced and because of this retrieval 

of any node can be done in Ο(log n) times, where n is total number of nodes. From the 
name of these scientists the tree is called AVL tree. 

 
Definition: 

 
An empty tree is height balanced if T is a non empty binary tree with TL and TR as 

its left and right sub trees. The T is height balanced if and only if 
i. TL and TR are height balanced. 
ii. hL-hR <= 1 where hL and hR are heights of TL and TR. 

The idea of balancing a tree is obtained by calculating the balance factor of a tree. 
 

Definition of Balance Factor: 

 
The balance factor BF(T) of a node in binary tree is defined to be hL-hR where hL and hR 
are heights of left and right sub trees of T. 

 
For any node in AVL tree the balance factor i.e. BF(T) is -1, 0 or +1. 
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Height of AVL Tree: 

Theorem: The height of AVL tree with n elements (nodes) is O(log n). 
 

Proof: Let an AVL tree with n nodes in it. Nh be the minimum number of nodes in an AVL tree of 
height h. 

 
In worst case, one sub tree may have height h-1 and other sub tree may have height h-2. And both these 
sub trees are AVL trees. Since for every node in AVL tree the height of left and right sub trees differ 
by at most 1. 

 
Hence 

 
Nh = Nh-1+Nh-2+1 

Where Nh denotes the minimum number of nodes in an AVL tree of height h. 

N0=0 N1=2 
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We can also write it as 
N > Nh = Nh-1+Nh-2+1 

> 2Nh-2 

> 4Nh-4 

. 

. 
> 2iNh-2i 

 
 

If value of h is even, let i = h/2-1 

Then equation becomes 

N > 2h/2-1N2 
 

= N > 2(h-1)/2x4 (N2 = 4) 
 

= O(log N) 
 

If value of h is odd, let I = (h-1)/2 then equation becomes 
N > 2(h-1)/2 N1 
N > 2(h-1)/2 x 1 
H = O(log N) 

 
This proves that height of AVL tree is always O(log N). Hence search, insertion and deletion can 
be carried out in logarithmic time. 

 
Representation of AVL Tree 

 
 The AVL tree follows the property of binary search tree. In fact AVL trees are 

basically binary search trees with balance factors as -1, 0, or +1. 

 After insertion of any node in an AVL tree if the balance factor of any  node 
becomes other than -1, 0, or +1 then it is said that AVL property is violated. Then 
we have to restore the destroyed balance condition. The balance factor is denoted at 
right top corner inside the node. 
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 After insertion of a new node if balance condition gets destroyed, then the nodes on that 
path(new node insertion point to root) needs to be readjusted. That means only the affected sub 
tree is to be rebalanced. 

 The rebalancing should be such that entire tree should satisfy AVL property. 
In above given example- 

129



Page 16 
 

 
 

Insertion of a node. 
 

There are four different cases when rebalancing is required after insertion of new node. 
 

1. An insertion of new node into left sub tree of left child. (LL). 
2. An insertion of new node into right sub tree of left child. (LR). 
3. An insertion of new node into left sub tree of right child. (RL). 
4. An insertion of new node into right sub tree of right child.(RR). 

 
Some modifications done on AVL tree in order to rebalance it is called rotations of AVL tree 

 

There are two types of rotations: 

 

Single rotation Double rotation 
Left-Left(LL rotation) Left-Right(LR rotation) 

 

 
Right-Right(RR rotation) Right-Left(RL rotation) 

 

Insertion Algorithm: 

1. Insert a new node as new leaf just as an ordinary binary search tree. 
2. Now trace the path from insertion point(new node inserted as leaf) towards root. For each node 
‘n’ encountered, check if heights of left (n) and right (n) differ by at most 1. 
a) If yes, move towards parent (n). 
b) Otherwise restructure by doing either a single rotation or a double rotation. 
Thus once we perform a rotation at node ‘n’ we do not require to perform any rotation at any 
ancestor on ‘n’. 
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When node ‘1’ gets inserted as a left child of node ‘C’ then AVL property gets destroyed i.e. node 
A has balance factor +2. 
The LL rotation has to be applied to rebalance the nodes. 

 
2. RR rotation: 

 
When node ‘4’ gets attached as right child of node ‘C’ then node ‘A’ gets unbalanced. The rotation 
which needs to be applied is RR rotation as shown in fig. 
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When node ‘3’ is attached as a right child of node ‘C’ then unbalancing occurs because of LR. 
Hence LR rotation needs to be applied. 

 
 

 
 
 

When node ‘2’ is attached as a left child of node ‘C’ then node ‘A’ gets unbalanced as its balance 
factor becomes -2. Then RL rotation needs to be applied to rebalance the AVL tree. 
Example: 

 
 
 
 

 
Insert 1, 25, 28, 12 in the following AVL tree. 
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Insert 1 
 

To insert node ‘1’ we have to attach it as a left child of ‘2’. This will unbalance the tree as follows. 
We will apply LL rotation to preserve AVL property of it. 

 
 
 

 
  Insert 25  

 

We will attach 25 as a right child of 18. No balancing is required as entire tree preserves the AVL 
property 
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Insert 28 
The node ‘28’ is attached as a right child of 25. RR rotation is required to rebalance. 
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Insert 12 

To rebalance the tree we have to apply LR rotation. 
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Deletion: 

 
Even after deletion of any particular node from AVL tree, the tree has to be restructured in order to 
preserve AVL property. And thereby various rotations need to be applied. 

 
Algorithm for deletion: 

 

The deletion algorithm is more complex than insertion algorithm. 
1. Search the node which is to be deleted. 
2. a) If the node to be deleted is a leaf node then simply make it NULL to remove. 

b) If the node to be deleted is not a leaf node i.e. node may have one or two children, then the 
node must be swapped with its inorder successor. Once the node is swapped, we can remove 
this node. 

3. Now we have to traverse back up the path towards root, checking the 
balance factor of every node along the path. If we encounter unbalancing 
in some sub tree 
then balance that sub tree using appropriate single or double 

rotations. The deletion algorithm takes O(log n) time to delete any node. 
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The tree becomes 
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Searching: 

 
The searching of a node in an AVL tree is very simple. As AVL tree is basically binary search tree, the 
algorithm used for searching a node from binary search tree is the same one is used to search a node 
from AVL tree. 

 
The searching of a node from AVL tree takes O(log n) time. 

 
 

BTREES 
 Multi-way trees are tree data structures with more than two branches at a node. The data 

structures of m-way search trees, B trees and Tries belong to this category of tree 
structures. 

 AVL search trees are height balanced versions of binary search trees, provide efficient 
retrievals and storage operations. The complexity of insert, delete and search operations on 
AVL search trees id O(log n). 

 Applications such as File indexing where the entries in an index may be very large, 
maintaining the index as m-way search trees provides a better option than AVL search trees 
which are but only balanced binary search trees. 

 While binary search trees are two-way search trees, m-way search trees are extended binary 
search trees and hence provide efficient retrievals. 

 B trees are height balanced versions of m-way search trees and they do not recommend 
representation of keys with varying sizes. 

 Tries are tree based data structures that support keys with varying sizes. 
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F K O B tree of order 4 

Level 1 

S T X Y Z 
Level 
3 

N M D C G 

 

Definition: 

 
A B tree of order m is an m-way search tree and hence may be empty. If non empty, then the following 
properties are satisfied on its extended tree representation: 

i. The root node must have at least two child nodes and at most m child nodes. 

ii. All internal nodes other than the root node must have at least |m/2 | non empty child nodes and at most 
m non empty child nodes. 

iii. The number of keys in each internal node is one less than its number of child nodes and these keys 
partition the keys of the tree into sub trees. 

iv. All external nodes are at the same level. 

v. 

Example: 
 

 

 

 
 

 

 

P Q W 

    

 

 

 

 

 

 

 

 

 

Insertion 
For example construct a B-tree of order 5 using following numbers. 3, 14, 7, 1, 8, 5, 11, 17, 13, 6, 23, 12, 
20, 26, 4, 16, 18, 24, 25, 19 
The order 5 means at the most 4 keys are allowed. The internal node should have at least 3 non empty 
children and each leaf node must contain at least 2 keys. 

 
 

Step 1: Insert 3, 14, 7, 1 
 

1 3 7 14 

     

 
. 
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7 13 

14 5 3 1 

 
 
 
 
 
 

Step 2: Insert 8, Since the node is full split the node at medium 1, 3, 7, 8, 14 
 
 

 
 
 
 
 
 

Step 3: Insert 5, 11, 17 which can be easily inserted in a B-tree. 
 
 
 
 
 
 

 

 
 

Step 4: Now insert 13. But if we insert 13 then the leaf node will have 5 keys which is not allowed. Hence 
8, 
11, 13, 14, 17 is split and medium node 13 is moved up. 

 
 
 
 
 
 
 

1 3 5 

    

 

8 11 14 17 

     

 

   

  

  

8 11 

 

7 

17 

7 

3 1 14 8 
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26 23 17 14 

 

   
 
 
 
 
 
 

Step 5: Now insert 6, 23, 12, 20 without any split. 
 
 
 
 
 
 
 
 

 

 
 

Step 6: The 26 is inserted to the right most leaf node. Hence 14, 17, 20, 23, 26 the node is split and 20 will be 
moved up. 

 

 
7 13 20 

    

 

1 3 5 6 

     

 

8 11 12 

    

 

14 17 20 23 

     

 

1 3 5 6 

     

 

8 11 12 

    

 

7 13 
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6 5 3 1 

13 

Thus the B tree is constructed. 
Deletion 

Consider a B-tree 

19 18 16 1 4 6 5 3 1 

20 17 7 4 

19 18 

13 

16 1 4 12 11 8 6 5 3 1 

20 17 7 4 

 

Step 7: Insertion of node 4 causes left most node to split. The 1, 3, 4, 5, 6 causes key 4 to move up. 
Then insert 16, 18, 24, 25. 

 

4 7 13 20 

     

 
 
 

Step 8: Finally insert 19. Then 4, 7, 13, 19, 20 needs to be split. The median 13 will be moved up to 
from a root node. 
The tree then will be - 

 
 
 
 
 
 
 
 
 
 
 
 
 

23 24 25 26 

     

 
 
 
 
 
 
 
 
 
 
 

 

8 11 12 

    

 

14 16 17 18 

     

 

23 24 25 26 

     

 

8 11 12 

    

 

23 24 25 26 
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Delete 8, then it is very simple. 
13 

19 18 16 1 4 12 11 6 5 3 1 

20 17 7 4 

13 

19 18 16 1 4 12 11 6 5 3 1 

23 17 7 4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

23 24 25 26 

     

 
 

Now we will delete 20, the 20 is not in a leaf node so we will find its successor which is 23, Hence 23 
will be moved up to replace 20. 

 
 
 
 
 
 
 
 
 
 
 
 
 

24 25 26 

    

 

Next we will delete 18. Deletion of 18 from the corresponding node causes the node with only one 
key, which is not desired (as per rule 4) in B-tree of order 5. The sibling node to immediate right has 
an extra key. In such a case we can borrow a key from parent and move spare key of sibling up. 
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13 

26 25 23 19 16 1 4 12 11 

24 17 7 

 

 
 

Now delete 5. But deletion of 5 is not easy. The first thing is 5 is from leaf node. Secondly this leaf 
node has no extra keys nor siblings to immediate left or right. In such a situation we can combine this 
node with one of the siblings. That means remove 5 and combine 6 with the node 1, 3. To make the tree 
balanced we have to move parent’s key down. Hence we will move 4 down as 4 is between 1, 3, and 6. 
The tree will be- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 3 4 6 

     

 

But again internal node of 7 contains only one key which not allowed in B-tree. We then will try to borrow 
a key from sibling. But sibling 17, 24 has no spare key. Hence we can do is that, combine 7 with 13 and 17, 
24. Hence the B-tree will be 

13 

26 25 23 19 16 1 4 12 11 6 5 3 1 

24 17 7 4 
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13 

4 7 
17 

20 

19 18 16 14 6 5 3 1 

 
 
 
 
 
 
 

 

     
 
 

Searching 

 
The search operation on B-tree is similar to a search to a search on binary search tree. Instead of choosing 
between a left and right child as in binary tree, B-tree makes an m-way choice. Consider a B-tree as given 
below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 

If we want to search 11 then 
 

i. 11 < 13 ; Hence search left node 
 

ii. 11 > 7 ; Hence right most node 
 

iii. 11 > 8 ; move in second block 
 

iv. node 11 is found 

26 25 23 19 16 14 12 11 1 3 4 6 

     

 

8 11 12 

    

 

23 24 25 26 

     

 

7 13 17 24 
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The running time of search operation depends upon the height of the tree. It is O(log n). 
 

Height of B-tree 

 
The maximum height of B-tree gives an upper bound on number of disk access. The maximum number of 
keys in a B-tree of order 2m and depth h is 

1 + 2m + 2m(m+1) + 2m(m+1)
2 

+ . . .+ 2m(m+1)
h-1

 

h 

= 1 + ∑ 2m(m+1)
i-1

 

i=1 
The maximum height of B-tree with n keys 

 

log m+1     n = O(log n) 
2m 
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B+ Trees 

 

 Most implementations use the B-tree variation, the B+-tree. 

 In the B-tree, every value of the search field appears once at some level in the 
tree, along with the data pointer to the record, or block where the record is stored. 

 In a B+ tree, data pointers are stored only at the leaf nodes, therefore the 
structure of the leaf nodes vary from the structure of the internal (non leaf) nodes. 

 If the search field is a key field, the leaf nodes have a value for every value of the 
search field, along with the data pointer to the record or block.   

 If the search field is a non key field, the pointer points to a block containing 
pointers to the data file records, creating an extra level of indirection (similar to 
option 3 for the secondary indexes) 

 The leaf nodes of the B+ Trees are linked to provide ordered access on the 
search field to the record.  The first level is similar to the base level of an index. 

 Some search field values in the leaf nodes are repeated in the internal nodes of 
the B+ trees, in order to guide the search. 

 

B+ Tree Example 

 

 
 
 
 

B+ Tree Internal Node Structure 

1. Each internal node is of the form <P1, K1, P2, K2, …., Pq-1, Kq-1, Pq>, where q<=p 
and each Pi is a tree pointer. 

2. Within each internal node, K1 < K2 < ….< Kq-1. 
3. For all search field values X in the subtree pointed at by Pi, we have:  

 Ki-1 < X <= Ki for 1 < i < q; 

 X <=K for i = 1; 

 and Ki-1 < X for i = q. 
4. Each internal node has at most, p tree pointers. 

5. Each internal node, except the root, has at least p/2 tree pointers.  The root 
node has at least two tree pointers if it is an internal node. 

6. An internal node with q pointers, q <=p, has q-1 search field values. 
 

 5    

 3     7  8  

1  3  5  6  7  8  9  12  
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B+ Tree Leaf Node Structure 
1. Each leaf node is of the form, <<K1, Pr1>, <K2, Pr2>,… ,<Kq-1, Prq-1>, Pnext> where 

q<=p, each Pri is a data pointer, and Pnext points to the next leaf node of the B+ 
tree. 

2. Within each leaf node, K1 < K2 < …< Kq-1, q<=p 
3. Each Pri is a data pointer that points to the record whose search field value is Ki, 

or to a file block containing the record (or a block of pointers if the search field is 
not a key field) 

4. Each leaf node has at least p/2 values. 
5. All leaf nodes are at the same level. 

B+ Tree Information 

 By starting at the leftmost block, it is possible to traverse leaf nodes as a linked 
list using the Pnext pointers.  This provides ordered access to the data records on 
the indexing field. 

 Entries in internal nodes of  a B+ tree include search values and tree pointers, 
without any data pointers, more entries can be stored into an internal node of a 
B+ tree, than for a B-tree. 

 Therefore the order p will be larger for a B+ tree, which leads to fewer B+ tree 
levels, improving the search time. 

 The order p can be different for the internal and leaf nodes, because of the 
structural differences of the nodes. 

 
Example 6 from Text 
To calculate the order p of a B+ Tree. suppose the search key field is V  = 9 bytes 
long, the block size is B = 512 bytes, a record pointer is Pr = 7 bytes and a block 
pointer is P = 6 bytes.  An internal node of the B+ trees can have up to p tree 
pointers and p – 1 search field values, which must fit into a single block. 
 
Calculate the value of p for an internal node: 

 
p*P + (p-1)*V <= 512 
p*6 + (p-1)*9 <= 512 
6p + 9p –9 <= 512 
15p <= 522 
p = 34 which means that each internal node can hold up to 34 tree pointers, and 33 
search key values. 
 
Calculate the value of p for a leaf node: 

 
 
 
 (pleaf)*((Pr + V)) + P <= 512 
16pleaf + 6 <= 512 
pleaf <= 506/16 

 5  

1  3  

9 bytes 

6 bytes 

6 bytes 

9 bytes 

 7 bytes 
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pleaf = 31 which means each leaf node can hold up to p leaf = 31 value/data pointer 
combinations, assuming data pointers are record pointers. 
 
 
Example 7 from Text 
 
Suppose that we construct a B+ tree on the field of Example 6.  To calculate the 
approximate number of entries of the B+ tree we assume that each node is 69 
percent full.  On average, each internal node will have 34 * 0.69 or approximately 23 
pointers, and hence 22 values.  Each leaf node, on the average will hold 0.69*pleaf = 
0.69*31 or approximately 21 data record pointers.  A B+ tree will have the following 
average number of entries at each level. 
 
Root:  1 node  22 entries  23 pointers 
Level 1: 23 nodes 506 entries  529 pointers   
Level 2: 529 nodes 11,638 entries  12,167 pointers 
Leaf Level: 12,167 nodes 255,507 record pointers 
 
When we compare this result with the previous B-tree example (Example 5), we can 
see that  the B+ tree can hold up to 255,507 record pointers, whereas a 
corresponding B-tree can only hold 65,535 entries. 
 
Insertion and Deletion with B+-trees. 
 
The following example has p = 3, and pleaf = 2 
 
Points to Note: 

 Every key value must exist at the leaf level, because all data pointers are at the 
leaf level, 

 Every value appearing in an internal node, also appears as the rightmost value in 
the leaf level of the subtree pointed at by the tree pointer to the left of the value. 

 When a leaf node is full, and a new entry is inserted there, the node overflows 
and must be split.  The first j = (pleaf+1)/2 entries (in the example 2 entries) in the 
original node are kept there, and the remaining entries are moved to the new leaf 
node.  The entry at position j is copied/replicated and moved to the parent node. 

 When an internal node is full, and a new entry is to be inserted, the node 
overflows and must be split into 2 nodes.  The entry at position j is moved to the 
parent node.  The first j-1 entries are kept in the original node, and the last j+1 
entries are moved to the new node. 

 
To practice B+ Tree insertion, complete Exercise 14.15 in Chapter 14 of the course 
text. 
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