

GROUP THEORY

Asst. Lecturer. Hadil Hazim Sami

Lecture No. 2

Binary operations

- **<u>Definition:</u>** Let S be a nonempty set, a binary operation * is a function from the Cartesian product S × S into S.
- <u>Mathematically</u>: Let $S \neq \emptyset$ and $*: S \times S \rightarrow S$ is a function s.t. $* (a, b) = a * b, \forall a, b \in S.$

Example1: Let $+: N \times N \rightarrow N$ is a function that is a binary operation on N since $\forall a, b \in N: +(a, b) = a + b \in N$.

Example2: $: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is a binary operation on \mathbb{R} .

Example3: \div : $Z \times Z \rightarrow Z$ is not binary operation since $\forall a, b \in Z$: $\div (a, b) = a \div b \notin Z$.

Definition: a mathematical system (mathematical structure), is a nonempty set of elements with one or more binary operations defined on this set.

Example: (N,+,.) is a math. sys., $(R,.,\div)$ is a math. sys. $(Z,.,\div)$ is not math. sys.,

Question1: let $S=\{1,-1,i,-i\}$ s.t. $i^2=-1$. Is (S,.) construct a math. system where (.) is an ordinary multiplication?

Question2: If Z_e and Z_O denote the even and odd integers respectively, are $(Z_e, +, .)$ & $(Z_o, +, .)$ constitute mathematical system?

<u>Definition</u>: The operation * defined on the set S is said to be associative if, $a * (b * c) = (a * b) * c : a, b, c \in S$.

Example1: + is an associative operation on N,Z,Q and R. also (.). but (-) is not asso. operation on R.

Example2: Let * be an operation defined on Z s.t. a * b = a + b + ab: a, b \in Z. Show whether that * is an associative operation on Z. Sol. Let $a, b, c \in Z$ (a * b) * c = a * (b * c)L.S. (a * b) * c = (a + b + ab) * c= (a + b + ab) + c + (a + b + ab)c= a + b + ab + c + ac + bc + abcR.S. a * (b * c) = a * (b + c + bc)= a + (b + c + bc) + a(b + c + bc)= a + b + c + bc + ab + ac + abc \therefore L.S = R.S.

 \therefore * is an ass. operation on Z