University of Al-Hamdaniya, College of Education
Department of Mathematics

GROUP THEORY

Level Two

Asst. Lecturer. Hadil Hazim Sami

Lecture No. 2

Definition: A semi group is a pair $\left(S,{ }^{*}\right)$ consisting of a nonempty sets together with an associative binary operation $*$ defined on S.

Example: Let Q be the rational numbers, define $a * b=\frac{1}{2}(a+b): a, b \in Q$. prove if $\left(\mathrm{Q},{ }^{*}\right)$ is a semi group or not?
Solution: $\mathrm{a} * \mathrm{~b}=\frac{1}{2}(\mathrm{a}+\mathrm{b}): \mathrm{a}, \mathrm{b} \in \mathrm{Q}$ then $\mathrm{a} * \mathrm{~b} \in \mathrm{Q}$

$$
\therefore * \text { is closed }
$$

let $a, b, c \in Q$

$$
a *(b * c)=(a * b) * c
$$

L.S. $/ a *(b * c)=a *\left[\frac{1}{2}(b+c)\right]$

$$
=\frac{1}{2}\left[a+\left[\frac{1}{2}(b+c)\right]=\frac{1}{2} a+\frac{1}{4} b+\frac{1}{4} c\right.
$$

$$
\begin{aligned}
\text { R.S. } /(\mathrm{a} * \mathrm{~b}) * \mathrm{c}=\frac{1}{2}(\mathrm{a}+\mathrm{b}) * \mathrm{c} & =\frac{1}{2}\left[\frac{1}{2}(\mathrm{a}+\mathrm{b})+c\right] \\
& =\frac{1}{4} \mathrm{a}+\frac{1}{4} \mathrm{~b}+\frac{1}{2} \mathrm{c}
\end{aligned}
$$

\because L. S. \neq R.S.
$\therefore *$ is not associative
Then $\left(\mathrm{Q},{ }^{*}\right)$ is not semi group.

Definition: The system ($\mathrm{S}, *$) is said to have a (two- sides) identity element for the operation * if there exists an element e in S such that:

$$
a * e=e * a=a \text { for every } a \in S
$$

Example: (0) is the identity element for the systems (Z,+),(Q,+),(R,+) and (1) for ($\mathrm{N},.),(\mathrm{Z},),.(\mathrm{Q} .),.(\mathrm{R},$.$) .$
(Z_{e}.) has not identity element

Example2: Let $S=\{a+b \sqrt{2}: \quad a, b \in Z\}$ is the system $(S,$.$) has an identity element?$
Sol. $\forall \mathrm{a}+\mathrm{b} \sqrt{2} \in S \quad \exists e_{1}+e_{2} \sqrt{2} \in S$, s.t.

$$
(\mathrm{a}+\mathrm{b} \sqrt{2})\left(e_{1}+e_{2} \sqrt{2}\right)=\left(e_{1}+e_{2} \sqrt{2}\right)(\mathrm{a}+\mathrm{b} \sqrt{2})=(\mathrm{a}+\mathrm{b} \sqrt{2})
$$

L.S. $/(\mathrm{a}+\mathrm{b} \sqrt{2})\left(e_{1}+e_{2} \sqrt{2}\right)=\mathrm{a}+\mathrm{b} \sqrt{2}$

$$
\begin{gather*}
a e_{1}+2 b e_{2}+\left(a e_{2}+b e_{1}\right) \sqrt{2}=a+b \sqrt{2} \\
a e_{1}+2 b e_{2}=a \ldots \text { (1) } \\
\rightarrow e_{1}=\frac{a-2 b e_{2}}{a} \ldots \text { (3) } \\
a e_{2}+b e_{1}=b \ldots \tag{2}
\end{gather*}
$$

Substitute 3 in 2 we get

$$
\begin{gathered}
a e_{2}+\frac{b a-2 b^{2} e_{2}}{a}=b \\
a^{2} e_{2}+b a-2 b^{2} e_{2}-b a=0 \\
\left(a^{2}-2 b^{2}\right) e_{2}=0 \\
\rightarrow e_{2}=0 \\
\rightarrow e_{1}=1 \\
\therefore e_{1}+e_{2} \sqrt{2}=1+0 \sqrt{2}
\end{gathered}
$$

R.S./ Similar

