

GROUP THEORY

Level Two

Asst. Lecturer. Hadil Hazim Sami

Lecture No. 5

<u>**Definition**</u>: the operation * defined on the set S is called commutative if a*b=b*a for every pair of elements $a, b \in S$.

Example1: Let S=Z, a*b=a+b-1

Solution: let $a, b \in Z$ S.T:

a*b=a+b-1=b+a-1=b*a

::* is a commutative.

Example2: Let S=R/{0}, $a*b = \frac{a}{b}$ then * is not comm. operation.

<u>Definition</u>: Let (G,*) be a group, if * is a commutative operation on G then (G,*) is called a commutative group.

Example: (Z,+), (R,+), (Q,+), $(Q/\{0\},.)$, $(R/\{0\},.)$ are comm. group.

<u>**Theorem1**</u>: Let (G, *) be a group, $a \in G$ and $m, n \in Z$. the powers of a obey the following laws of exponents:

1.
$$a^n * a^m = a^{n+m} = a^m * a^n$$

2.
$$(a^n)^m = a^{nm} = (a^m)^n$$

3.
$$a^{-n} = (a^n)^{-1}$$

4. $e^n = e$

<u>Theorem2</u>: The identity element of a group (G,*) is unique, and each element of a group has inverse element.

<u>Proof</u>: Let (G,*) be a group has two identity element e_1 and e_2 then $\forall a \in G$: $a * e_1 = e_1 * a = a \dots (1)$

and

$$a * e_2 = e_2 * a = a \dots (2)$$

Equality (1) and (2) we have

$$a * e_1 = a * e_2 \rightarrow e_1 = e_2$$

So, the identity element of a group (G,*) is unique.

To show that an element of a group (G,*) has exactly one inverse, we assume that $a \in G$ such that a has two inverse element a_1^{-1} and a_2^{-1} then $a * a_1^{-1} = a_1^{-1} * a = e \dots (3)$ $a * a_2^{-1} = a_2^{-1} * a = e \dots (4)$

Equality (3) and (4) we have

$$a * a_1^{-1} = a * a_2^{-1} \dots (5)$$

Multiply both sides of (5) from the left by a_1^{-1} or a_2^{-1} we have

$$(a_1^{-1} * a) * a_1^{-1} = (a_1^{-1} * a) * a_2^{-1}$$

 $\rightarrow e * a_1^{-1} = e * a_2^{-1}$
 $\rightarrow a_1^{-1} = a_2^{-1}$

 \therefore each element of a group (G,*) has exactly one inverse

element