University of Al-Hamdaniya, College of Education
Department of Mathematics

GROUP THEORY

Level Two

Asst. Lecturer. Hadil Hazim Sami

Lecture No. 5

Definition: the operation * defined on the set S is called commutative if $a * b=b * a$ for every pair of elements $a, b \in S$.

Example1: Let $\mathrm{S}=\mathrm{Z}, \mathrm{a}^{*} \mathrm{~b}=\mathrm{a}+\mathrm{b}-1$
Solution: let $\mathrm{a}, \mathrm{b} \in \mathrm{Z} \quad$ S.T:

$$
\mathrm{a}^{*} \mathrm{~b}=\mathrm{a}+\mathrm{b}-1=\mathrm{b}+\mathrm{a}-1=\mathrm{b} * \mathrm{a}
$$

$\therefore *$ is a commutative.

Example2: Let $\mathrm{S}=\mathrm{R} /\{0\}, \mathrm{a} * \mathrm{~b}=\frac{\mathrm{a}}{\mathrm{b}}$ then $*$ is not comm. operation.
Definition: Let ($G, *$) be a group, if $*$ is a commutative operation on G then $(\mathrm{G}, *)$ is called a commutative group.

Example: $(\mathrm{Z},+),(\mathrm{R},+),(\mathrm{Q},+),(\mathrm{Q} /\{0\},),.(\mathrm{R} /\{0\},$.$) are comm. group.$

Theorem1: Let $(\mathrm{G}, *)$ be a group , $\mathrm{a} \in \mathrm{G}$ and $\mathrm{m}, \mathrm{n} \in \mathrm{Z}$. the powers of a obey the following laws of exponents:

1. $\mathrm{a}^{\mathrm{n}} * \mathrm{a}^{\mathrm{m}}=\mathrm{a}^{\mathrm{n}+\mathrm{m}}=\mathrm{a}^{\mathrm{m}} * \mathrm{a}^{\mathrm{n}}$
2. $\left(a^{n}\right)^{m}=a^{n m}=\left(a^{m}\right)^{n}$
3. $\mathrm{a}^{-\mathrm{n}}=\left(\mathrm{a}^{\mathrm{n}}\right)^{-1}$
4. $e^{n}=e$

Theorem2: The identity element of a group $\left(G,{ }^{*}\right)$ is unique, and each element of a group has inverse element.

Proof: Let $\left(G,{ }^{*}\right)$ be a group has two identity element e_{1} and e_{2} then $\forall a \in G$:
$a * e_{1}=e_{1} * a=a \ldots$ (1)
and
$a * e_{2}=e_{2} * a=a \ldots$ (2)
Equality (1) and (2) we have

$$
a * e_{1}=a * e_{2} \rightarrow e_{1}=e_{2}
$$

So, the identity element of a group $\left(\mathrm{G},{ }^{*}\right)$ is unique.

To show that an element of a group ($\mathrm{G},{ }^{*}$) has exactly one inverse, we assume that $a \in G$ such that a has two inverse element a_{1}^{-1} and a_{2}^{-1} then

$$
\begin{align*}
& a * a_{1}^{-1}=a_{1}^{-1} * a=e \ldots \\
& a * a_{2}^{-1}=a_{2}^{-1} * a=e \tag{4}
\end{align*}
$$

Equality (3) and (4) we have

$$
a * a_{1}^{-1}=a * a_{2}^{-1} \ldots
$$

Multiply both sides of (5) from the left by a_{1}^{-1} or a_{2}^{-1} we have

$$
\begin{gathered}
\left(a_{1}^{-1} * a\right) * a_{1}^{-1}=\left(a_{1}^{-1} * a\right) * a_{2}^{-1} \\
\rightarrow e * a_{1}^{-1}=e * a_{2}^{-1} \\
\rightarrow a_{1}^{-1}=a_{2}^{-1}
\end{gathered}
$$

\therefore each element of a group $\left(\mathrm{G},{ }^{*}\right)$ has exactly one inverse element

