University of Al-Hamdaniya, College of Education
Department of Mathematics

GROUP THEORY

Level Two

Asst. Lecturer. Hadil Hazim Sami

Lecture No. 6

Corollary: If $\left(\mathrm{G},{ }^{*}\right)$ is a group then $\left(a^{-1}\right)^{-1}=a \forall a \in G$.
Proof: Let $a \in G$, since $\left(G,{ }^{*}\right)$ is a group then $\exists a^{-1} \in G$ s.t.

$$
a * a^{-1}=a^{-1} * a=e \ldots
$$

Now, since $a^{-1} \in G$, then $\exists\left(a^{-1}\right)^{-1} \in G$ s.t.

$$
a^{-1} *\left(a^{-1}\right)^{-1}=\left(a^{-1}\right)^{-1} * a^{-1}=e
$$

From (1) and (2) we have

$$
a * a^{-1}=a^{-1} *\left(a^{-1}\right)^{-1}
$$

$\rightarrow a^{-1} \quad$ has two inverse elements a and $\left(a^{-1}\right)^{-1}$
But from (theorem 2) each element of a group ($\mathrm{G},{ }^{*}$) has exactly one inverse element.
$\therefore \quad\left(a^{-1}\right)^{-1}=a$.

Lemma: If $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in \mathrm{G}$ and $\left(\mathrm{G},{ }^{*}\right)$ is a semi group then $\left(\mathrm{a}^{*} \mathrm{~b}\right)^{*}\left(\mathrm{c}^{*} \mathrm{~d}\right)=\mathrm{a}^{*}\left(\left(\mathrm{~b}^{*} \mathrm{c}\right)^{*} \mathrm{~d}\right)$
Proof: L.S.) $\left(\mathrm{a}^{*} \mathrm{~b}\right)^{*}\left(\mathrm{c}^{*} \mathrm{~d}\right)$
Let $\mathrm{m}=\mathrm{c}^{*} \mathrm{~d}$

$$
\begin{aligned}
& \Rightarrow\left(a^{*} b\right)^{*}\left(c^{*} d\right)=\left(a^{*} b\right)^{*} m=a^{*}(b * m) \quad[\text { since } * \text { associative }] \\
& =a^{*}\left(\left(b^{*}\left(c^{*} d\right)\right)=a^{*}\left(\left(b^{*} c\right) * d\right) .\right.
\end{aligned}
$$

R.S.) $a^{*}\left(\left(b^{*} c\right)^{*} d\right)=a^{*}\left(b^{*}\left(c^{*} d\right)\right)\left[\right.$ since ${ }^{*}$ associative $]$

Let $m=c^{*} d$
$\Rightarrow \quad \mathrm{a}^{*}(\mathrm{~b} * \mathrm{~m})=\left(\mathrm{a}^{*} \mathrm{~b}\right){ }^{*} \mathrm{~m} \quad[$ since $*$ associative $]$
$=\left(\mathrm{a}^{*} \mathrm{~b}\right) *\left(\mathrm{c}^{*} \mathrm{~d}\right)$
$\therefore\left(\mathrm{a}^{*} \mathrm{~b}\right)^{*}\left(\mathrm{c}^{*} \mathrm{~d}\right)=\mathrm{a}^{*}\left((\mathrm{~b} * \mathrm{c})^{*} \mathrm{~d}\right)$.

Theorem3: If $(G, *)$ is a group, then $(a * b)^{-1}=b^{-1}$

* $\mathrm{a}^{-1} \forall \mathrm{a}, \mathrm{b} \in \mathrm{G}$.

Proof: \Rightarrow clearly $(a * b) *(a * b)^{-1}=(a * b)^{-1} *(a * b)$
$=e$
$\hookleftarrow(a * b) *\left(\mathrm{~b}^{-1} * \mathrm{a}^{-1}\right)=\left((a * b) * \mathrm{~b}^{-1}\right)$

* a^{-1} [from the lemma]
$=\left(a *\left(b * \mathrm{~b}^{-1}\right)\right) * \mathrm{a}^{-1}=(a * e) * \mathrm{a}^{-1}=a * \mathrm{a}^{-1}=e$
$\therefore \quad(\mathrm{a} * \mathrm{~b})^{-1}=\mathrm{b}^{-1} * \mathrm{a}^{-1}$

Corollary: If $\left(\mathrm{G},{ }^{*}\right)$ is a commutative group, then $(\mathrm{a} * \mathrm{~b})^{-1}$
$=\mathrm{a}^{-1} * \mathrm{~b}^{-1} \forall \mathrm{a}, \mathrm{b} \in \mathrm{G}$.
Proof: Since $(G, *)$ is a group then $(a * b)^{-1}=b^{-1} * a^{-1}$
[by th.3]
But $\mathrm{b}^{-1} * \mathrm{a}^{-1}=\mathrm{a}^{-1} * \mathrm{~b}^{-1} \quad[*$ comm. operation $]$
$\therefore(\mathrm{a} * \mathrm{~b})^{-1}=\mathrm{a}^{-1} * \mathrm{~b}^{-1}$
H.W. Let G denotes the set of all ordered pairs of real numbers.

If the binary operation * is defined on the set G by the rule
$(\mathrm{a}, \mathrm{b}) *(\mathrm{c}, \mathrm{d})=(\mathrm{ac}, \mathrm{bc}+\mathrm{d})$ then show that $\left(\mathrm{G},{ }^{*}\right)$ is not commutative group? And find

$$
((1,3) *(2,4))^{-1},(2,4)^{-1} *(1,3)^{-1}
$$

