

GROUP THEORY

Level Two

Asst. Lecturer. Hadil Hazim Sami

Lecture No. 6

<u>Corollary:</u> If (G,*) is a group then $(a^{-1})^{-1} = a \ \forall \ a \in G$. <u>Proof</u>: Let $a \in G$, since (G,*) is a group then $\exists \ a^{-1} \in G \ s. t$. $a * a^{-1} = a^{-1} * a = e \dots (1)$ Now, since $a^{-1} \in G$, then $\exists \ (a^{-1})^{-1} \in G \ s. t$.

 $a^{-1}*(a^{-1})^{-1} = (a^{-1})^{-1}*a^{-1} = e \dots (2)$

From (1) and (2) we have

 $a * a^{-1} = a^{-1} * (a^{-1})^{-1}$

→ a^{-1} has two inverse elements a and $(a^{-1})^{-1}$ But from (theorem 2) each element of a group (G,*) has exactly one inverse element.

$$\therefore (a^{-1})^{-1} = a .$$

<u>**Lemma</u>:</u> If a, b, c, d \in G and (G, *) is a semi group then (a*b)*(c*d)=a*((b*c)*d) <u>Proof**:</u> L.S.) (a*b)*(c*d)</u>

Let m=c*d

 \Rightarrow (a*b)*(c*d)= (a*b)*m =a*(b*m) [since * associative]

= $a^{*}((b^{*}(c^{*}d))) = a^{*}((b^{*}c)^{*}d)$.

R.S.)
$$a^{*}((b^{*}c)^{*}d) = a^{*}((b^{*}(c^{*}d)))$$
 [since * associative]

Let m=c*d

 \Rightarrow a*(b*m) = (a*b)*m [since * associative]

= (a*b)*(c*d)

: (a*b)*(c*d)=a*((b*c)*d).

Theorem3: If (G,*) is a group, then
$$(a * b)^{-1} = b^{-1}$$

* $a^{-1} \forall a, b \in G$.
Proof: ⇒ clearly $(a * b) * (a * b)^{-1} = (a * b)^{-1} * (a * b)$
= e
 $\Leftrightarrow (a * b) * (b^{-1} * a^{-1}) = ((a * b) * b^{-1})$
* a^{-1} [from the lemma]
= $(a * (b * b^{-1})) * a^{-1} = (a * e) * a^{-1} = a * a^{-1} = e$
 $\therefore (a * b)^{-1} = b^{-1} * a^{-1}$

<u>Corollary</u>: If (G,*) is a commutative group, then $(a * b)^{-1}$ = $a^{-1} * b^{-1} \forall a, b \in G$.

Proof: Since (G,*) is a group then $(a*b)^{-1} = b^{-1} * a^{-1}$ [by th.3] But $b^{-1} * a^{-1} = a^{-1} * b^{-1}$ [* comm. operation] $\therefore (a*b)^{-1} = a^{-1} * b^{-1}$ H.W. Let G denotes the set of all ordered pairs of real numbers. If the binary operation * is defined on the set G by the rule (a, b) * (c, d) = (ac, bc + d) then show that (G, *) is not commutative group? And find

 $((1,3) * (2,4))^{-1}$, $(2,4)^{-1} * (1,3)^{-1}$