University of Al-Hamdaniya, College of Education
 Department of Mathematics RING THEORY
 Level Three
 Asst. Lecturer. Hadil Hazim Sami

LECTURE NO. 10

Definition : let R be a ring and I is an ideal of R. Then $a+I=\{a+i: i \in I, a \in R\}$ is coset of I in the ring R.

Notes:

1) $(a+I) \oplus(b+I)=(a+b)+I$
2) $(a+I) \otimes(b+I)=(a b)+I$
3) $R / I=\{a+I: a \in R\}$
4) $a+I=b+I \leftrightarrow a-b \in I$
5) $a+I=I \quad$ iff $a \in I$

Example1: $\left(\mathrm{Z}_{6},+,.\right)$ is a ring , $(2)=\{0,2,4\}$ is an ideal of $(\mathrm{Z} 6,+,$.$) is an ideal of (\mathrm{Z} 6,+,$.$) then$

$$
\mathrm{Z}_{6} /(2)=\{0+(2), 1+(2)\}
$$

Example 2: ($\mathrm{Z},+$. .) is a ring $\left(\mathrm{Z}_{\mathrm{e}},+\right.$.) is an ideal of $(\mathrm{Z},+,$.$) then$

$$
Z / Z_{e}=\left\{0+Z_{e}, 1+Z_{e}\right\}=\left\{Z_{e}, Z_{o}\right\}
$$

Theorem5: If I is an ideal of the ring $(\mathrm{R},+,$.$) ,then (\mathrm{R} / \mathrm{I}, \oplus, \otimes)$ is a ring which is called (Quotient ring of R by I)
proof: $I)(R / I, \oplus)$ is a comm. group

1) $(a+I) \oplus(b+I)=(a+b)+I \in R / I$

$$
\forall \mathrm{a}+\mathrm{I}, \mathrm{~b}+\mathrm{I} \in \mathrm{R} / \mathrm{I}
$$

1) Let $a+I, b+I, c+I \in R / I$

$$
\begin{gathered}
{[(\mathrm{a}+\mathrm{I}) \oplus(\mathrm{b}+\mathrm{I})] \oplus(\mathrm{c}+\mathrm{I})=(\mathrm{a}+\mathrm{I}) \oplus[(\mathrm{b}+\mathrm{I}) \oplus(\mathrm{c}+\mathrm{I})]} \\
\mathrm{L} . \mathrm{S} .[(\mathrm{a}+\mathrm{I}) \oplus(\mathrm{b}+\mathrm{I})] \oplus(\mathrm{c}+\mathrm{I})=((\mathrm{a}+\mathrm{b})+\mathrm{I}) \oplus(\mathrm{c}+\mathrm{I}) \\
=(\mathrm{a}+(\mathrm{b}+\mathrm{c})+\mathrm{I}]=(\mathrm{a}+\mathrm{I}) \oplus[(\mathrm{b}+\mathrm{c})+\mathrm{I}] \\
=(\mathrm{a}+\mathrm{I}) \oplus[(\mathrm{b}+\mathrm{I}) \oplus(\mathrm{c}+\mathrm{I})] R . S
\end{gathered}
$$

$\therefore \oplus$ is a associative

3) $\exists \mathrm{e}+\mathrm{I} \in \mathrm{R} / \mathrm{I} \quad \forall \mathrm{a}+\mathrm{I} \in \mathrm{R} / \mathrm{I}$ S.T.

H.W
4) for each $a+I \in R / I \exists a^{-1}+I \in R / I S . T$.
H.W
$5)(a+I) \oplus(b+I)=(b+I) \oplus(a+I)$
L.S. $(\mathrm{a}+\mathrm{I}) \oplus(\mathrm{b}+\mathrm{I})=(\mathrm{a}+\mathrm{b})+\mathrm{I}=(\mathrm{b}+\mathrm{a})+\mathrm{I}=(\mathrm{b}+\mathrm{I}) \oplus(\mathrm{a}+\mathrm{I})=$ R. S
$\therefore \oplus$ is comm.
II) $(R / I, \otimes)$ is a semi group

1) Let $a+I, b+I \in R / I$
$\Rightarrow(a+I) \otimes(b+I)=(a b)+I \in R / I$
2)Let $a+I, b+I, c+I \in R / I$
$[(\mathrm{a}+\mathrm{I}) \otimes(\mathrm{b}+\mathrm{I})] \otimes(\mathrm{c}+\mathrm{I})=(\mathrm{a}+\mathrm{I}) \otimes[(\mathrm{b}+\mathrm{I}) \otimes(\mathrm{c}+\mathrm{I})]$ H.W
$\therefore \otimes$ is associative
III) \otimes is dist. over
2) $(\mathrm{a}+\mathrm{I}) \otimes[(\mathrm{b}+\mathrm{I}) \oplus(\mathrm{c}+\mathrm{I})]=[(\mathrm{a}+\mathrm{I}) \otimes(\mathrm{b}+\mathrm{I})] \oplus[(\mathrm{a}+\mathrm{I}) \otimes(\mathrm{c}+\mathrm{I})]$ H.W
3) By the same way (H.W)
$\therefore(\mathrm{R} / \mathrm{I}, \oplus, \otimes)$ is a ring

Theorem6: If the ring $(R,+,$.$) is commutative then the quotient ring \therefore(R / I, \oplus, \otimes)$ is also.

Proof: let Let $a+I, b+I \in R / I$ then

$$
\begin{gathered}
(a+I) \otimes(b+I)=(a b)+I \\
=(b a)+I[\text { since } R \text { is a comm. ring }] \\
=(b+I) \otimes(a+I)
\end{gathered}
$$

\therefore the ring $(\mathrm{R} / \mathrm{I}, \oplus, \otimes)$ is commutative.

Theorem7: If (R,+,.) is a ring with identity, so the ring $(\mathrm{R} / \mathrm{I}, \oplus, \otimes)$ is with identity.
Proof: since a ring ($\mathrm{R},+,$.$) is a ring with identity, then \exists 1 \in \mathrm{R}$ s.t.

$$
a .1=1 . a=a \forall a \in R
$$

Now, let $\mathrm{a}+\mathrm{I} \in \mathrm{R} / \mathrm{I}$ then $\mathrm{a}+\mathrm{I}=(\mathrm{a} .1)+\mathrm{I}=(\mathrm{a}+\mathrm{I}) \otimes(1+\mathrm{I})$

Similarly/a $+\mathrm{I}=(1 . \mathrm{a})+\mathrm{I}=(1+\mathrm{I}) \otimes(\mathrm{a}+\mathrm{I})$
\therefore the ring $(\mathrm{R} / \mathrm{I}, \oplus, \otimes)$ has an identity element.

Example: $\left(\mathrm{Z}_{12},+,.\right)$ is comm. Ring with identity and $((2),+,$.$) is an ideal of \mathrm{Z}_{12}$ also $\left(\mathrm{Z}_{12} /(2), \oplus, \otimes\right)$ is comm. ring with identity.

