

University of Al-Hamdaniya, College of Education Department of Mathematics RING THEORY Level Three Asst. Lecturer. Hadil Hazim Sami

LECTURE NO. 10

Definition : let R be a ring and I is an ideal of R. Then $a + I = \{a + i : i \in I, a \in R\}$ is coset of I in the ring R.

Notes :

1) $(a + I) \oplus (b + I) = (a + b) + I$ 2) $(a + I) \otimes (b + I) = (ab) + I$ 3) $R/I = \{ a + I : a \in R \}$ 4) $a + I = b + I \leftrightarrow a - b \in I$ 5) a + I = I iff $a \in I$ **Example1:** $(Z_6, +, .)$ is a ring $(2) = \{0, 2, 4\}$ is an ideal of $(Z_6, +, .)$ is an ideal of $(Z_6, +, .)$ then

 $Z_6/(2) = \{0 + (2), 1 + (2)\}$

Example 2: (Z,+.) is a ring (Z_e ,+.) is an ideal of (Z,+,.) then $Z/Z_e = \{0 + Z_e, 1 + Z_e\} = \{Z_e, Z_o\}$ <u>**Theorem5**</u>: If I is an ideal of the ring (R,+,.), then $(R/I,\oplus,\otimes)$ is a ring which is called (Quotient ring of R by I)

<u>proof:</u> I) $(R/I, \oplus)$ is a comm. group

1) $(a + I) \oplus (b + I) = (a + b) + I \in R/I$

 $\forall a + I, b + I \in R/I$

1) Let $a + I, b + I, c + I \in R/I$

 $[(a + I) \oplus (b + I)] \oplus (c + I) = (a + I) \oplus [(b + I) \oplus (c + I)]$ L. S. $[(a + I) \oplus (b + I)] \oplus (c + I) = ((a + b) + I) \oplus (c + I)$ $= (a + (b + c) + I] = (a + I) \oplus [(b + c) + I]$ $= (a + I) \oplus [(b + I) \oplus (c + I)] R.S$

 $\div \oplus$ is a associative

```
3) \exists e + I \in R/I \quad \forall a + I \in R/I \quad S.T.
```

H.W

4) for each $a + I \in R/I \exists a^{-1} + I \in R/I S.T.$

H.W

5)(a + I) \oplus (b + I) = (b + I) \oplus (a + I) L.S. (a + I) \oplus (b + I) = (a + b) + I = (b + a) + I = (b + I) \oplus (a + I) = R.S ∴ \oplus is comm.

```
1) Let a + I, b + I \in R/I

\Rightarrow (a + I) \otimes (b + I) = (ab) + I \in R/I

2)Let a + I, b + I, c + I \in R/I

[(a + I) \otimes (b + I)] \otimes (c + I) = (a + I) \otimes [(b + I) \otimes (c + I)]H.W
```

 $\div \otimes$ is associative

III) \otimes is dist. over

1) $(a + I) \otimes [(b + I) \oplus (c + I)] = [(a + I) \otimes (b + I)] \oplus [(a + I) \otimes (c + I)]$ H.W

2) By the same way (H.W)

 $(R/I, \bigoplus, \bigotimes)$ is a ring

<u>Theorem6</u>: If the ring (R,+,.) is commutative then the quotient ring $\therefore (R/I, \bigoplus, \bigotimes)$ is also.

<u>Proof</u>: let Let $a + I, b + I \in R/I$ then

$$(a + I) \otimes (b + I) = (ab) + I$$

= (ba) + I [since R is a comm.ring] = $(b + I) \otimes (a + I)$

∴ the ring (R/I, \oplus , \otimes) is commutative.

Theorem7: If (R,+,.) is a ring with identity, so the ring $(R/I, \bigoplus, \bigotimes)$ is with identity.

<u>Proof</u>: since a ring (R,+,.) is a ring with identity, then $\exists 1 \in \mathbb{R}$ s.t.

 $a.1 = 1.a = a \forall a \in R$

Now, let $a + I \in R/I$ then $a + I = (a, 1) + I = (a + I) \otimes (1 + I)$

Similarly $/ a + I = (1, a) + I = (1 + I) \otimes (a + I)$

 \therefore the ring (R/I, \oplus , \otimes)has an identity element.

Example: $(Z_{12},+,.)$ is comm. Ring with identity and ((2),+,.) is an ideal of Z_{12} also $(Z_{12}/(2),\oplus,\otimes)$ is comm. ring with identity.