

University of Al-Hamdaniya, College of
Education
Department of Mathematics
RING THEORY

Asst. Lecturer. Hadil Hazim Sami

Level Three

LECTURE NO. 11

Problems

Q1/ If $(I_1, +, .)$ and $(I_2, +, .)$ are ideals of the ring (R, +, .) such that $I_1 \cap I_2 = \{0\}$ prove a.b=0 for every $a \in I_1$ and $b \in I_2$.

Proof: let $a \in I_1$ and $b \in I_2$

Since I_1 is an ideal, therefore $a.b \in I_1$ and since I_2 is an ideal therefore $a.b \in I_2$

$$∴$$
 a. b ∈ $I_1 \cap I_2 = \{0\}$

 \therefore a. b = 0 for every a ∈ I_1 and b ∈ I_2 .

Q2/Verify that the ring of real numbers (R,+,.) is a simple ring.

Proof: let (I,+,.) be a proper ideal of the ring (R,+,.) and let $0 \neq a \in I$

Since (R,+,...) has a multiplicative inverse therefore $\exists a^{-1} \in R$

$$\rightarrow$$
 a. $a^{-1} = 1 \in I$.

 $\therefore R \subseteq I$ and since $I \subseteq R$

Therefore I=R C!

 \therefore (R, +, .) is a simple ring.

Definition: a ring which contains no ideals except the trivial ideals is said to be a simple.

Q3/ Let (I,+,.) be an ideal of the ring(R,+,.) and define ann = $\{r \in R: r.a = 0 \text{ for all } a \in I\}$. prove that the triple (ann(I),+,.) constitutes an ideal of (R,+,.) called the annihilator ideal of I.

Proof: since 0.a = 0 for all $a \in I$

- \therefore ann(I) \neq Ø because 0 \in ann(I).
- 1) Let r_1 and $r_2 \in ann(I)$. that is $r_1 \cdot a = 0 \& r_2 \cdot a = 0 \forall a \in I$ $(r_1 r_2) \cdot a = r_1 a r_2 a = 0 0 = 0$
- $\therefore r_1 r_2 \in ann(I)$
- 2) Let $x \in ann(I)$ and $r \in R$ (xr)a=x(ra)=0
 - $xr \in ann(I)$

Definition: Let (R,+,.) be a ring and $\emptyset \neq I \subseteq R$ then (I,+,.) is an ideal of (R,+,.) iff:

- 1. $a-b\in I \ \forall \ a,b\in I$
- 2. ar∈I and ra∈I ∀r∈R,a∈I

Similarly

$$(rx)a=r(xa)=r.0=0$$

$$\therefore rx \in ann(I)$$

 \therefore (ann(I),+,.) is an ideal of (R, +,.).

Example: let $(Z_{10}, +,...)$ is a ring, (2)&(5) are proper ideal of Z_{10} . find ann(2) and ann(5)

Sol..;

$$0.0=0$$
, $0.2=0,...$

$$1.0=0, 1.2=2 \neq 0$$

$$2.0=0$$
, $2.2=4 \neq 0$

:

$$9.0=0, 9.2=18=8 \neq 0$$

$$ann(2) = \{0,5\},$$

ann(5)=? H.W