University of Al-Hamdaniya, College of Education
 Department of Mathematics RING THEORY
 Level Three
 Asst. Lecturer. Hadil Hazim Sami

LECTURE NO. 12

Problems

Q4/ suppose $\left(\mathrm{I}_{1},+,.\right)$ and $\left(\mathrm{I}_{2},+,.\right)$ are ideals of the ring $(\mathrm{R},+,$.$) . Define \mathrm{I}_{1}+\mathrm{I}_{2}=\{\mathrm{a}+\mathrm{b}: \mathrm{a}$

Proof: since $0 \in \mathrm{I}_{1} \& 0 \in \mathrm{I}_{2}$, hence $0=0+0$

$$
\therefore \mathrm{I}_{1}+\mathrm{I}_{2} \neq \emptyset
$$

1) Let $a_{1}+b_{1}$ and $a_{2}+b_{2} \in I_{1}+I_{2}$

$$
\left(\mathrm{a}_{1}+\mathrm{b}_{1}\right)-\left(\mathrm{a}_{2}+\mathrm{b}_{2}\right)=\left(\mathrm{a}_{1}-\mathrm{a}_{2}\right)+\left(\mathrm{b}_{1}-\mathrm{b}_{2}\right) \in \mathrm{I}_{1}+\mathrm{I}_{2}
$$

Definition: Let ($\mathrm{R},+,$.) be a ring and $\emptyset \neq \mathrm{I} \subseteq \mathrm{R}$ then $(\mathrm{I},+,$.$) is$ an ideal of $\quad(\mathrm{R},+,$.$) iff:$

1. $\mathrm{a}-\mathrm{b} \in \mathrm{I} \forall \mathrm{a}, \mathrm{b} \in \mathrm{I}$
2. $a r \in I$ and $r a \in I$ $\forall r \in R, a \in I$
2) Let $a+b \in I_{1}+I_{2}$ and $r \in R$
$(\mathrm{a}+\mathrm{b}) \mathrm{r}=\mathrm{ar}+\mathrm{br} \in \mathrm{I}_{1}+\mathrm{I}_{2}$

Similarly
$r(a+b)=r a+r b$
$\therefore\left(\mathrm{I}_{1}+\mathrm{I}_{2},+,.\right)$ is an ideal of the ring $(\mathrm{R},+,$.$) .$

Example: if $\left(\mathrm{Z}_{6},+,.\right)$ is a ring , (2)\&(3) are proper ideal of Z_{6}, then

$$
\begin{gathered}
(2)+(3)=\{0,2,4\}+\{0,3\} \\
=\{0,1,2,3,4,5\}=\mathrm{Z}_{6}
\end{gathered}
$$

Definition : Let R be a commutative ring with identity and an ideal $\mathrm{I}=$ (a) generated by an element $a \in R$ is called a principal ideal of the ring ($\mathrm{R},+,$.) and defined by

$$
(a)=a R=\{a r: \forall r \in R, a \in R\} .
$$

Prove (a) $=\{a r: \forall r \in R, a \in R\}$ is an ideal.(H.W)
Example: consider the ring ($\mathrm{Z},+,$.)
(2) $=\{(2) \mathrm{r}: \quad \forall r \in Z\}=\{0, \mp 2, \mp 4, \ldots\}$
$(-2)=\{(-2) r: \quad \forall r \in Z\}=\{0, \pm 2, \pm 4, \ldots\}$
$\rightarrow(2)=(-2)$
(1) $=Z$
(0) $=\{0\}$

