

University of Al-Hamdaniya, College of Education Department of Mathematics RING THEORY Level Three Asst. Lecturer. Hadil Hazim Sami

LECTURE NO. 12

Problems

Q4/ suppose (I₁, +, .) and (I₂, +, .) are ideals of the ring (R, +, .). Define I₁ + I₂ = {a + b: a

Proof: since $0 \in I_1 \& 0 \in I_2$, hence 0=0+0

 $\therefore I_1 + I_2 \neq \emptyset$

1) Let $a_1 + b_1$ and $a_2 + b_2 \in I_1 + I_2$

 $(a_1 + b_1) - (a_2 + b_2) = (a_1 - a_2) + (b_1 - b_2) \in I_1 + I_2$

Definition: Let (R, +, .) be a ring and $\emptyset \neq I \subseteq R$ then (I, +, .) is an ideal of (R, +, .) iff:

- 1. $a-b\in I \forall a,b\in I$
- 2. $ar \in I \text{ and } ra \in I$ $\forall r \in R, a \in I$

```
2) Let a + b \in I_1 + I_2 and r \in R
```

```
(a+b)r=ar+br \in I_1 + I_2
```

Similarly

r(a+b)=ra+rb

 \therefore (I₁ + I₂, +, .) is an ideal of the ring (R, +, .).

Example: if $(Z_6, +, .)$ is a ring, (2)&(3) are proper ideal of Z_6 , then

 $(2)+(3)=\{0,2,4\}+\{0,3\}$

 $= \{0, 1, 2, 3, 4, 5\} = Z_6$

Definition : Let R be a commutative ring with identity and an ideal I=(a) generated by an element $a \in R$ is called a principal ideal of the ring (R,+,.) and defined by

 $(a) = aR = \{ar: \forall r \in R, a \in R\}.$

Prove (a) = {ar: $\forall r \in R, a \in R$ } is an ideal.(H.W)

Example: consider the ring (Z,+,.)

 $(2) = \{(2)r: \forall r \in Z\} = \{0, \pm 2, \pm 4, ...\}$

 $(-2) = \{(-2)r: \forall r \in Z\} = \{0, \pm 2, \pm 4, ...\}$ $\rightarrow (2) = (-2)$ (1) = Z $(0) = \{0\}$