University of Al-Hamdaniya, College of Education
 Department of Mathematics RING THEORY
 Level Three Asst. Lecturer. Hadil Hazim Sami

LECTURE NO. 13

Definition: Let R be a commutative ring with identity and $\left(\mathrm{I}_{\mathrm{i}},+,.\right)$ are ideals of R where $\mathrm{i}=0,1,2, \ldots, \mathrm{n}$ then $(\mathrm{R},+,$.$) is called a principle ideal ring (P.I.R) if and only if$ every ideal of R is a principal ideal.

Definition : Let R be a commutative ring with identity and an ideal $\mathrm{I}=$ (a) generated by an element a $\in R$ is called a principal ideal of the ring ($\mathrm{R},+,$.) and defined by
(a) $=a R=\{a r: \forall r \in R, a \in R\}$.

Example: $(\mathrm{Z},+,$.$) is a principle ideal ring, since (\mathrm{Z},+,$.$) is a$ commutative ring with identity in which every ideals of ($\mathrm{Z},+,$.) are of the form $((\mathrm{n}),+,$.$) where \mathrm{n}$ is a nonnegative integer.

Theorem8: Let I_{1} and I_{2} be ideals of the ring $(R,+,$.$) . A ring R$ is said to be direct sum of I_{1} and I_{2} if :

1) $I_{1}+I_{2}=R$
2) $I_{1} \cap I_{2}=\{0\}$
and denoted by $\mathrm{R}=\mathrm{I}_{1} \oplus \mathrm{I}_{2}$.

Example: $\left(Z_{12},+,.\right)$ is a ring and $I_{1}=\{0,3,6,9\}$ and $I_{2}=\{0,4,8\}$ are ideals of Z_{12}, show that $\left(Z_{12},+,.\right)$ is a direct sum of I_{1} and I_{2}.

Solution: 1) $I_{1}+I_{2=}\{0,3,6,9\}+\{0,4,8\}=Z_{12}$
2) $I_{1} \cap I_{2}=\{0\}$
$\therefore \mathrm{Z}_{12}$ is a direct sum of I_{1} and I_{2}.

Definition: Let $(R,+,$.$) be a ring and a \in R$ then a is said to be an idempotent element if $a^{2}=a$.

Example: $\left(\mathrm{Z}_{6},+,.\right)$ is a ring find all the idempotent element of Z_{6}.

Solution: $0^{2}=0$,

$$
\begin{aligned}
& 1^{2}=1 \\
& 2^{2}=4 \neq 2, \\
& 3^{2}=9=3 \\
& 4^{2}=16=4 \\
& 5^{2}=25=1 \neq 5 .
\end{aligned}
$$

\therefore Idempotent element of Z_{6} are $\{0,1,3,4\}$

