

University of Al-Hamdaniya, College of Education Department of Mathematics RING THEORY Level Three Asst. Lecturer. Hadil Hazim Sami

LECTURE NO. 13

<u>Definition</u>: Let R be a commutative ring with identity and $(I_i, +, .)$ are ideals of R where i=0,1,2,...,n then (R, +, .) is called a principle ideal ring (P.I.R) if and only if every ideal of R is a principal ideal.

Definition : Let R be a commutative ring with identity and an ideal I=(a) generated by an element a \in R is called a principal ideal of the ring (R,+,.) and defined by (a) = aR = {ar: $\forall r \in R, a \in R$ }. **Example**: (Z,+,.) is a principle ideal ring, since (Z,+,.) is a commutative ring with identity in which every ideals of (Z,+,.) are of the form ((n),+,.) where n is a nonnegative integer.

<u>Theorem8</u>: Let I_1 and I_2 be ideals of the ring (R,+,.). A ring R is said to be direct sum of I_1 and I_2 if :

1) $I_1 + I_2 = R$

2) $I_1 \cap I_2 = \{0\}$

and denoted by $R=I_1 \oplus I_2$.

Example: $(Z_{12},+,.)$ is a ring and $I_1 = \{0,3,6,9\}$ and $I_2 = \{0,4,8\}$ are ideals of Z_{12} , show that $(Z_{12},+,.)$ is a direct sum of I_1 and I_2 .

Solution: 1) $I_1 + I_{2=} \{0,3,6,9\} + \{0,4,8\} = Z_{12}$

2) $I_1 \cap I_2 = \{0\}$

 \therefore Z₁₂ is a direct sum of I₁ and I₂.

<u>Definition</u>: Let (R, +, .) be a ring and $a \in R$ then a is said to be an idempotent element if $a^2 = a$.

Example: $(Z_6, +, .)$ is a ring find all the idempotent element of Z_6 .

Solution: $0^2 = 0$, $1^2 = 1$ $2^2 = 4 \neq 2$, $3^2 = 9 = 3$ $4^2 = 16 = 4$ $5^2 = 25 = 1 \neq 5$.

 \therefore Idempotent element of Z₆ are {0,1,3,4}