University of Al-Hamdaniya, College of Education
 Department of Mathematics RING THEORY
 Level Three Asst. Lecturer. Hadil Hazim Sami

LECTURE NO. 14

Definition: Let $(R,+,$.$) and \left(R^{\prime},+^{\prime},.\right)$ are rings and let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}^{\prime}$ be a

 function then f is said to be a ring homomorphism iff:1) $f(a+b)=f(a)+{ }^{\prime} f(b)$
2) $f(a . b)=f(a) \cdot ' f(b)$
$\forall a, b \in R$.

Example(1): Let $\mathrm{f}:(\mathrm{Z},+,.) \rightarrow(\mathrm{Z},+,$.$) is a function defined by:$

$$
\mathrm{f}(\mathrm{a})=0 \quad \forall \mathrm{a} \in \mathrm{Z}
$$

Is f homo. ring?

$$
\text { sol: Let } a, b \in Z
$$

1) $f(a+b)=0$

$$
=0+0
$$

$$
=f(a)+f(b)
$$

2) $f(a . b)=0$

$$
=0.0
$$

$$
=f(a) \cdot f(b)
$$

$\therefore \mathrm{f}$ is ring homomorphism.

Example(2): Let $f:(R,+,.) \rightarrow(R,+,$.$) is a function defined by:$

$$
f(\mathrm{a})=2 \mathrm{a} \forall \mathrm{a} \in \mathrm{R} \text { is } \mathrm{f} \text { homo. ring? }
$$

Sol: Let $\mathrm{a}, \mathrm{b} \in \mathrm{R}$

$$
\text { 1) } \begin{aligned}
& f(a+b)=2(a+b) \\
&=2 a+2 b \\
&=f(a)+f(b)
\end{aligned}
$$

$$
\text { 2) } f(a \cdot b)=2(a b)
$$

$$
\neq f(a) \cdot f(b)
$$

$\therefore \mathrm{f}$ is not ring homomorphism.

