University of Al-Hamdaniya, College of Education
 Department of Mathematics RING THEORY
 Level Three Asst. Lecturer. Hadil Hazim Sami

LECTURE NO. 19

Theorem11: Let f be a ring homomorphism from ($\mathrm{R},+,$.)into the ring ($\left.\mathrm{R}^{\prime},+^{\prime},.\right)$) then:

1) $f(0)=0^{\prime}$
2) $f(-a)=-f(a) \forall a \in R$
3) $\left(f(\mathrm{R}),+^{\prime}, \cdot\right)$ is a subring of $\left(\mathrm{R}^{\prime},+^{\prime}, \cdot\right)$.

If ($\mathrm{R},+, .$.) and $\left(\mathrm{R}^{\prime},+^{\prime}, .\right.$,) are rings with identity element $1 \& 1^{\prime}$ then
4) $f(1)=1^{\prime}$.

$$
\text { proof: } f(a)=f(a .1)=f(a))^{\prime} f(1) \quad \text { [since } \mathrm{f} \text { is homo.] }
$$

$$
\begin{aligned}
& f(a) \cdot '^{\prime}=f(a) \cdot{ }^{\prime} f(1) \quad[\text { by cacellation law }] \\
& \therefore f(1)=1^{\prime} .
\end{aligned}
$$

$$
\text { 5) } f\left(a^{-1}\right)=(f(a))^{-1} \quad \forall a \in R
$$

Proof: Let $f(a) \in R^{\prime}$

$$
f(a) \cdot^{\prime} f\left(a^{-1}\right)=f\left(a a^{-1}\right)=f(e)=e^{\prime}
$$

$\therefore f\left(a^{-1}\right)$ is inverse $f(a)$

But $(f(a))^{-1}$ is inverse $f(a)$ since $f(a)^{\prime}(f(a))^{-1}=e^{\prime}$
$\Rightarrow f\left(a^{-1}\right)=(f(a))^{-1}$

Ring Isomorphism

Definition : If $(R,+,$.$) and \left(R^{\prime},+^{\prime}, .!\right)$ are two rings, let f be a function from R into R^{\prime} i.e.
$f: R \rightarrow R^{\prime}$,then f is called a ring isomorphism if:

1) f is a ring homomorphism.

2) $f(a+b)=f(a)+{ }^{\prime} f(b)$
3) $f(a . b)=f(a) . ' f(b)$
2)f is one to one (injective)

$$
\mathrm{f}(\mathrm{a})=\mathrm{f}(\mathrm{~b}) \quad \square \mathrm{a}=\mathrm{b} \forall \mathrm{a}, \mathrm{~b} \in \mathrm{R}
$$

3) f is onto (surjective)

$$
\forall y \in R^{\prime} \exists x \in R \ni f(x)=y
$$

or/ two ring ($\mathrm{R},+,$.) and ($\mathrm{R}^{\prime},+^{\prime}, . .^{\prime}$) are said to be isomorphic if there exist a one to one ring homomorphism from R onto R^{\prime} and is denoted by R $\cong R^{\prime}$.

Example: Let $(R,+,$.$) be a ring with identity and f_{a}: R \rightarrow R$ defined as $f_{a}(x)=a a^{-1} \quad \forall x \in R, a \in R$. show that $R \cong R$.

Sol.: 1) f_{a} is a ring homo. [راجع محاضرة 15 مثال 3]
2) fis $1-1$ since

$$
\begin{aligned}
\forall x, y \in R & \Rightarrow f_{a}(x)=f_{a}(y) \\
& \Rightarrow \mathrm{axa}^{-1}=\mathrm{aya}^{-1} \\
& \Rightarrow x=y
\end{aligned}
$$

3) fis onto
$\forall y \in R \quad \exists \mathrm{x}=\mathrm{a}^{-1} \mathrm{y} \quad \mathrm{a} \in R$

$$
\begin{aligned}
& \text { توضيح } \\
& \mathrm{f}_{\mathrm{a}}(\mathrm{x})=\mathrm{y}=\mathrm{axa}^{-1} \\
& \text { بالضرب بالطرفين بـ } \\
& x=a^{-1} y a \\
& \text { توضيح (2) } \\
& f_{a}(x)=a\left(a^{-1} y a\right) a^{-1} \\
& =y
\end{aligned}
$$

H.w./ Let R and R^{\prime} are rings and Δ_{1}, Δ_{2} are two binary operations of

R s.t.

$$
\begin{aligned}
& x \Delta_{1} y=x+y+1 \\
& x \Delta_{2} y=x+y+x y \quad \forall x, y \in \mathrm{R}^{\prime}
\end{aligned}
$$

Show that $\mathrm{f}:\left(\mathrm{R}^{\prime}, \Delta_{1}, \Delta_{2}\right) \rightarrow(R,+,$.$) is a ring isomorphism s.t$

$$
\mathrm{f}(x)=\mathrm{x}+1 \quad \forall x \in \mathrm{R}^{\prime}
$$

