

University of Al-Hamdaniya, College of Education Department of Mathematics RING THEORY Level Three Asst. Lecturer. Hadil Hazim Sami

LECTURE NO. 19

<u>**Theorem11:**</u> Let f be a ring homomorphism from (R, +, .) into the ring (R', +, .) then:

1) f(0)=0'

2) $f(-a)=-f(a) \forall a \in R$

3) (f(R), +,) is a subring of (R', +,).

If (R, +, .) and (R', +, .) are rings with identity element 1&1' then 4) f(1)=1'. proof: f(a) = f(a.1) = f(a).' f(1) [since f is homo.] f(a).' 1' = f(a).' f(1) [by cacellation law]

 $\therefore f(1) = 1'.$

5) $f(a^{-1}) = (f(a))^{-1} \quad \forall a \in R$

Proof: Let $f(a) \in R'$

$$f(a).' f(a^{-1}) = f(aa^{-1}) = f(e) = e^{-1}$$

 $\therefore f(a^{-1})$ is inverse f(a)

But $(f(a))^{-1}$ is inverse f(a) since f(a). $(f(a))^{-1} = e'$

$$\Rightarrow f(a^{-1}) = \left(f(a)\right)^{-1}$$

Ring Isomorphism

<u>Definition</u> : If (R,+,.) and (R',+',.') are two rings, let f be a function from R into R' i.e.

f: $R \rightarrow R'$, then f is called a ring isomorphism if:

1) f is a ring homomorphism.

1) f(a+b)=f(a)+' f(b)2) f(a.b)=f(a).' f(b)

2)f is one to one (injective)

3) f is onto (surjective)

$$\forall y \in R' \exists x \in R \ \ni f(x) = y$$

 $f(a)=f(b) \implies a=b \forall a, b \in R$

or/two ring (R,+,.) and (R', +',.') are said to be isomorphic if there exist a one to one ring homomorphism from R onto R' and is denoted by R \cong R'. **Example**: Let (R,+,.) be a ring with identity and $f_a: R \to R$ defined as $f_a(x) = axa^{-1} \quad \forall x \in R, a \in R$. show that $R \cong R$.

Sol.: 1) f_a is a ring homo. [3 مثال 15 مثال 2) f is 1 - 1 since $\forall x, y \in R \implies f_a(x) = f_a(y)$ $\Rightarrow axa^{-1} = aya^{-1}$ $\Rightarrow x = y$

3) f is onto

 $\forall y \in R \quad \exists x = a^{-1} y \ a \in R$

توضيح

$$f_a(x) = y = axa^{-1}$$

 y بالطرفين بـ
 a, a^{-1}
 $x = a^{-1} y a$
 (2)
 $rectance x = a(a^{-1} y a)a^{-1}$
 $= y$

H.w./ Let R and R' are rings and Δ_1, Δ_2 are two binary operations of R s.t.

 $x \Delta_1 y = x + y + 1$

 $x \Delta_2 y = x + y + xy \quad \forall x, y \in \mathbb{R}'$

Show that f: $(R', \Delta_1, \Delta_2) \rightarrow (R, +, .)$ is a ring isomorphism s.t

 $f(x) = x + 1 \ \forall x \in R'$