

University of Al-Hamdaniya, College of Education Department of Mathematics RING THEORY Level Three Asst. Lecturer. Hadil Hazim Sami

LECTURE NO. 2

Definition: let (S,*,0) be a mathematical system with binary operations * and 0. The operation (0) is said to be distributive over the operation (*) if :

1) $a \circ (b * c) = (a \circ b) *(a \circ c)$ [left dist. Law] 2) $(b * c) \circ a = (b \circ a) * (c \circ a)$ [right dist. Law] $\forall a, b, c \in S$. **Example (1):** the binary operation (.) is distributive over the binary operation (+) on a set R, since:

a. (b + c) = (a.b) + (a.c) [left dist. Law]
 (b + c). a = (b.a) + (c.a) [right dist. Law]
 ∀ a, b, c ∈ R.

Example (2): The two binary operation *& o defined on the set of integers (Z) by :

a * b = a + 2b

 $a \circ b = 2ab$

 $\forall a, b \in \mathbb{Z}.$

Is 0 distributive over the binary operation *?

Solution: 1) $a \circ (b * c) = (a \circ b) * (a \circ c)$

```
L.S) a \circ (b * c) = a \circ (b + 2c)
= 2 ab + 4ac
```

```
R.S) ( a o b) *(a o c) = (2ab) * (2ac)
= 2ab + 4ac
```

since L.S = R.S

 \therefore a \circ (b * c) = (a \circ b) *(a \circ c)

2) (b * c)
$$\circ$$
 a = (b \circ a) * (c \circ a)

L.S) (b * c)
$$\circ$$
 a = (b+2c) \circ a

=2ba+4ca

R.S)
$$(b \circ a) * (c \circ a) = (2ba) * (2ca)$$

= 2ba + 4ca
since L.S=R.S

 $\therefore (b * c) \circ a = (b \circ a) * (c \circ a)$

From (1) & (2) we show that is \circ distributive over *.

<u>Note</u>: If (\circ) is a commutative operation and satisfies the left or right distributive law, we conclude that (\circ) is distributive over (*).