

University of Al-Hamdaniya, College of Education Department of Mathematics RING THEORY Level Three Asst. Lecturer. Hadil Hazim Sami

LECTURE NO. 21

Problem

Q/ Given that f is a ring homo. From the ring (R,+,.) onto the ring (R',+',.') prove that:

a) If (I, +, .) is an ideal of (R, +, .) then the triple (f(I), +', .') is an ideal of (R', +', .').

Proof: 1) since $0 \in I$, then $f(0) = o' \in f(I)$

 $\therefore f(I) \neq \emptyset$

2)let $f(a), f(b) \in f(I)$ then $a, b \in I$ and since I is an ideal of R then $a - b \in I$

 \Rightarrow f(a) - f(b) = f(a - b) \in f(I) [f is homo.]

2)let $f(a) \in f(I)$, $f(r) \in R'[f \text{ is onto}]$

 \rightarrow f(r). f(a) = f(ra) \in f(I) [since ra \in I, I is an ideal]

 $: f(r). f(a) \in f(I)$

Similarly: f(a). $f(r) = f(ar) \in f(I)$ [since $ra \in I$, I is an ideal]

 $:: f(a), f(r) \in f(I)$

 \therefore f(I) is an ideal of R'.

b) If (I', +', .') is an ideal of (R', +', .') then the triple $(f^{-1}(I'), +, .)$ is an ideal of (R, +, .) with ker $(f) \subseteq f^{-1}(I')$

Proof:1) since o' ∈ I' and f(0) = o' then 0 ∈ f⁻¹(I')
∴ f⁻¹(I') ≠ Ø
2) Let a, b ∈ f⁻¹(I') then f(a), f(b) ∈ I'
so f(a - b) = f(a) - f(b) ∈ I'
∴ a-b∈ f⁻¹(I')

3) Let $a \in f^{-1}(I'), r \in \mathbb{R} \quad \Rightarrow f(a) \in I' \& f(r) \in \mathbb{R}'$

 $f(ar) = f(a). f(r) \in I'$ [I' is an ideal]

 \therefore ar \in f⁻¹(l')

Similarly: f(ra) = f(r). $f(a) \in I'$ [I' is an ideal]

 \therefore ra \in f⁻¹(I')

 \therefore f⁻¹(I') is an ideal of R

To prove that ker(f) $\subseteq f^{-1}(I')$

Let
$$a \in \ker(f) \Rightarrow f(a) = o' \in I'$$

 \Rightarrow a \in f⁻¹(0')

 $\Rightarrow a \in f^{-1}(I') \quad [since 0' \in I']$

 $\therefore \ker(f) \subseteq f^{-1}(I').$