University of Al-Hamdaniya, College of Education
 Department of Mathematics RING THEORY
 Level Three Asst. Lecturer. Hadil Hazim Sami

LECTURE NO. 21

Problem

$Q /$ Given that f is a ring homo. From the ring $(R,+,$.$) onto the ring \left(R^{\prime},+^{\prime}, ..\right)$ prove that:
a) If $(\mathrm{I},+,$.$) is an ideal of (\mathrm{R},+,$.$) then the triple \left(\mathrm{f}(\mathrm{I}),+^{\prime}, .{ }^{\prime}\right)$ is an ideal of ($\mathrm{R}^{\prime},+^{\prime}, .!$).

Proof: 1) since $0 \in I$, then $f(0)=o^{\prime} \in f(I)$
$\therefore \mathrm{f}(\mathrm{I}) \neq \varnothing$
2)let $f(a), f(b) \in f(I)$ then $a, b \in I$ and since I is an ideal of R then $a-b \in I$
$\Rightarrow \mathrm{f}(\mathrm{a})-\mathrm{f}(\mathrm{b})=\mathrm{f}(\mathrm{a}-\mathrm{b}) \in \mathrm{f}(\mathrm{I})[\mathrm{f}$ is homo.]
2) let $f(a) \in f(I), f(r) \in R^{\prime}[f$ is onto]
$\rightarrow f(r) . f(a)=f(r a) \in f(I)$ [since $r a \in I, I$ is an ideal]
$\therefore \mathrm{f}(\mathrm{r}) \mathrm{f}(\mathrm{a}) \in \mathrm{f}(\mathrm{I})$

Similarly: $f(a) . f(r)=f(a r) \in f(I)$ [since $r a \in I, I$ is an ideal]
$\therefore \mathrm{f}(\mathrm{a}) . \mathrm{f}(\mathrm{r}) \in \mathrm{f}(\mathrm{I})$
$\therefore \mathrm{f}(\mathrm{I})$ is an ideal of R^{\prime}.
b) If $\left(\mathrm{I}^{\prime},+^{\prime}, .^{\prime}\right)$ is an ideal of $\left(\mathrm{R}^{\prime},+^{\prime}, .^{\prime}\right)$ then the triple $\left(\mathrm{f}^{-1}\left(\mathrm{I}^{\prime}\right),+,.\right)$ is an ideal of $(R,+,$.$) with \operatorname{ker}(f) \subseteq f^{-1}\left(I^{\prime}\right)$

Proof: 1) since $\mathrm{o}^{\prime} \in \mathrm{I}^{\prime}$ and $\mathrm{f}(0)=\mathrm{o}^{\prime}$ then $0 \in \mathrm{f}^{-1}\left(\mathrm{I}^{\prime}\right)$
$\therefore \mathrm{f}^{-1}\left(\mathrm{I}^{\prime}\right) \neq \varnothing$
2) Let $a, b \in f^{-1}\left(I^{\prime}\right)$ then $f(a), f(b) \in I^{\prime}$

$$
\text { so } f(a-b)=f(a)-f(b) \in I^{\prime}
$$

$$
\therefore \mathrm{a}-\mathrm{b} \in \mathrm{f}^{-1}\left(\mathrm{I}^{\prime}\right)
$$

3) Let $a \in f^{-1}\left(I^{\prime}\right), r \in R \quad \Rightarrow f(a) \in I^{\prime} \& f(r) \in R^{\prime}$
$\mathrm{f}(\mathrm{ar})=\mathrm{f}(\mathrm{a}) . \mathrm{f}(\mathrm{r}) \in \mathrm{I}^{\prime} \quad\left[\mathrm{I}^{\prime}\right.$ is an ideal $]$

$$
\therefore \operatorname{ar} \in \mathrm{f}^{-1}\left(\mathrm{I}^{\prime}\right)
$$

Similarly: $\mathrm{f}(\mathrm{ra})=\mathrm{f}(\mathrm{r}) . \mathrm{f}(\mathrm{a}) \in \mathrm{I}^{\prime} \quad\left[\mathrm{I}^{\prime}\right.$ is an ideal $]$
$\therefore \mathrm{ra} \in \mathrm{f}^{-1}\left(\mathrm{I}^{\prime}\right)$
$\therefore \mathrm{f}^{-1}\left(\mathrm{I}^{\prime}\right)$ is an ideal of R

To prove that $\operatorname{ker}(\mathrm{f}) \subseteq \mathbf{f}^{\mathbf{- 1}}\left(\mathbf{I}^{\prime}\right)$

$$
\begin{aligned}
& \text { Let } a \in \operatorname{ker}(\mathrm{f}) \Rightarrow \mathrm{f}(\mathrm{a})=\mathrm{o}^{\prime} \in \mathrm{I}^{\prime} \\
& \quad \Rightarrow \mathrm{a} \in \mathrm{f}^{-1}\left(0^{\prime}\right) \\
& \Rightarrow \mathrm{a} \in \mathrm{f}^{-1}\left(\mathrm{I}^{\prime}\right) \quad\left[\text { since } 0^{\prime} \in \mathrm{I}^{\prime}\right] \\
& \therefore \operatorname{ker}(\mathrm{f}) \subseteq \mathrm{f}^{-1}\left(\mathrm{I}^{\prime}\right)
\end{aligned}
$$

