

University of Al-Hamdaniya, College of Education Department of Mathematics RING THEORY Level Three Asst. Lecturer. Hadil Hazim Sami

LECTURE NO. 3

<u>Definition</u>: A ring is a mathematical system $(R,*,\circ)$ consisting of a nonempty set R and two binary operations * and \circ defined on R such that:

- (R,*) is a commutative group.
- (\mathbf{R}, \circ) is a semi group.
- The semi group (°) is distributive over the group operation (*).

Example : A ring is an ordered triple (R,+,.) consisting of a nonempty set R and two operations called addition and multiplication respectively satisfying the following:

I. (R,+) is a commutative group

```
1) \forall a, b \in R; a + b \in R (+closed).
```

2) $(a + b) + c = a + (b + c) \forall a, b, c \in R (+associative).$

```
3) \exists 0 \in \mathbb{R} s.t a + 0 = 0 + a = a \forall a \in \mathbb{R}.
```

```
4) For each a \in R, \exists -a \in R \text{ s.t.}
```

```
a + (-a) = (-a) + a = 0.
```

5) $a + b = b + a \forall a, b \in R$.

II. (R,.) is a Semi group

1) \forall a,b \in R ;a.b \in R (. closed).

2)(a.b).c = a.(b.c) \forall a, b, c \in R (.associative)

III. (.) is distributive over +

1) $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$ [left dist. Law]

2) $(b + c) \cdot a = (b \cdot a) + (c \cdot a)$ [right dist. Law]

∀ a ,b ,c ∈R.

<u>Definition</u>: A commutative ring is a ring in which (R, \circ) is a commutative semi group.

Example: (R,+,.) is a commutative ring.

Definition: A ring with identity is a ring in which (R, \circ) is a semi group with identity i.e $\exists e \in R$ s.t $a \circ e = e \circ a = a \quad \forall a \in R.$

Examples:

- 1) (Z,+,.) is a commutative ring with identity.
- 2) (R, +, .) is a commutative ring with identity.
- 3) $(Z_n,+,.)$ is a comm. ring with identity.
- (ملاحظة في Z_n شكل العنصر فيها بالشكل [a] وعملية الجمع والضرب فيها بالشكل
- $[a], [b] \in Z_n \rightarrow [a] +_n [b] = [a+b] \in Z_n$ ∀[a], [b] ∈ Z_n → [a] ._n [b] = [a.b] ∈ Z_n

<u>Definition</u>: If A is an arbitrary set, then the set whose elements are all subsets of A is known as the power set of A denoted by p(A):

 $p(A) = \{B: B \subseteq A\}$

Example: Let A={a,b} show that $(p(A),\Delta,\cap)$ is a ring. [s.t. $(A\Delta B)=(A - B)$ $\cup (B - A)$

	Δ	{a}		{b}	{a,b}	Ø		
	{a}	Ø		{a,b}	{b}	{a}		
	{b}	{a,b}		Ø	{a}	{b}		
	{a,b}	{b}		{a}	Ø	{a,b		
	Ø	{a}		{b}	{a,b}	Ø		

I. $(p(A), \Delta)$ is a comm. group

1) Δ is closed, since $\forall \{a\}, \{b\} \in p(A) \rightarrow \{a\}\Delta\{b\} = \{a, b\} \in p(A)$ 2) Δ is asso.

3) Ø is an identity

4) $\emptyset^{-1} = \emptyset$, $\{a\}^{-1} = \{a\}, \{b\}^{-1} = \{b\}, \{a, b\}^{-1} = \{a, b\}$

5) Δ is comm.

 \therefore (p(A), Δ) is a comm. group

II. $(p(A), \cap)$ is a semi group

\bigcap	{a}	{b}	{a,b}	Ø
{a}	{a}	Ø	{a}	Ø
{b}				
{a,b}				
Ø				

III. \cap is distributive over Δ . 1) {a} \cap ({b} Δ {a,b}) = ({a} \cap {b}) Δ ({a} \cap {a,b}) [left dist. Law] 2) ({b} Δ {a,b}) \cap {a} = ({b} \cap {a}) Δ ({a,b} \cap {a}) [right dist. Law]

 $\forall \{a\}, \{b\}, \{a,b\} \in p(A)$

 \therefore (p(A), Δ , \cap) is a ring.