University of Al-Hamdaniya, College of Education
 Department of Mathematics RING THEORY
 Level Three
 Asst. Lecturer. Hadil Hazim Sami

LECTURE NO. 3

Definition: A ring is a mathematical system ($\mathrm{R}, *, \mathrm{o}$) consisting of a nonempty set R and two binary operations * and o defined on R such that:
($\mathrm{R}, *$) is a commutative group.
(R, \circ) is a semi group.

- The semi group (O) is distributive over the group operation $(*)$.

Example : A ring is an ordered triple ($\mathrm{R},+,$.) consisting of a nonempty set R and two operations called addition and multiplication respectively satisfying the following:
I. $(\mathrm{R},+)$ is a commutative group

1) $\forall a, b \in R ; a+b \in R$ (+closed).
2) $(\mathrm{a}+\mathrm{b})+\mathrm{c}=\mathrm{a}+(\mathrm{b}+\mathrm{c}) \quad \forall \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{R}(+$ associative $)$.
3) $\exists 0 \in R$ s.t $a+0=0+a=a \forall a \in R$.
4) For each $a \in R, \exists-a \in R$ s.t.

$$
a+(-a)=(-a)+a=0
$$

5) $\mathrm{a}+\mathrm{b}=\mathrm{b}+\mathrm{a} \forall \mathrm{a}, \mathrm{b} \in \mathrm{R}$.
II. (R,.) is a Semi group
6) $\forall a, b \in R ; a . b \in R \quad$ (. closed).
2)(a.b). $c=a .(b . c) \quad \forall a, b, c \in R($. associative)
III. (.) is distributive over +
7) $\mathrm{a} \cdot(\mathrm{b}+\mathrm{c})=(\mathrm{a} \cdot \mathrm{b})+(\mathrm{a} \cdot \mathrm{c}) \quad[$ left dist. Law]
8) $(b+c) \cdot a=(b \cdot a)+(c \cdot a)[$ right dist. Law]
$\forall \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{R}$.

Definition: A commutative ring is a ring in which ($R, 0$) is a commutative semi group.

Example: $(\mathrm{R},+,$.$) is a commutative ring.$

Definition: A ring with identity is a ring in which (R, \circ) is a semi group with identity
i.e $\exists \mathrm{e} \in \mathrm{R}$ s.t
$\mathrm{a} \circ \mathrm{e}=\mathrm{e} \circ \mathrm{a}=\mathrm{a} \quad \forall \mathrm{a} \in \mathrm{R}$.

Examples:

1) ($\mathrm{Z},+$, .) is a commutative ring with identity.
2) $(R,+,$.$) is a commutative ring with identity.$
3) $\left(\mathrm{Z}_{\mathrm{n}},+,.\right)$ is a comm. ring with identity.
(ملاحظة في Z شكل العنصر فيها بالثكل [a] وعملية الجمع والضرب فيها بالشكل

$$
\begin{aligned}
& {[\mathrm{a}],[\mathrm{b}] \in \mathrm{Z}_{\mathrm{n}} \rightarrow[\mathrm{a}]+_{\mathrm{n}}[\mathrm{~b}]=[\mathrm{a}+\mathrm{b}] \in \mathrm{Z}_{\mathrm{n}}} \\
& \forall[\mathrm{a}],[\mathrm{b}] \in \mathrm{Z}_{\mathrm{n}} \rightarrow[\mathrm{a}] \cdot{ }_{\cdot n}[\mathrm{~b}]=[\mathrm{a} . \mathrm{b}] \in \mathrm{Z}_{\mathrm{n}}
\end{aligned}
$$

Definition: If A is an arbitrary set, then the set whose elements are all subsets of A is known as the power set of A denoted by $p(A)$:

$$
\mathrm{p}(\mathrm{~A})=\{\mathrm{B}: \mathrm{B} \subseteq \mathrm{~A}\}
$$

Example: Let $A=\{a, b\}$ show that $(p(A), \Delta, \cap)$ is a ring. [s.t. $(A \Delta B)=(A-B)$ $\cup(B-A)$

Sol: $\mathrm{A}=\{\{a\},\{b\},\{a, b\}, \varnothing\}$

Δ	$\{\mathrm{a}\}$		$\{\mathrm{b}\}$	$\{\mathrm{a}, \mathrm{b}\}$	\varnothing
$\{\mathrm{a}\}$	\varnothing		$\{\mathrm{a}, \mathrm{b}\}$	$\{\mathrm{b}\}$	$\{\mathrm{a}\}$
$\{\mathrm{b}\}$	$\{\mathrm{a}, \mathrm{b}\}$		\varnothing	$\{\mathrm{a}\}$	$\{\mathrm{b}\}$
$\{\mathrm{a}, \mathrm{b}\}$	$\{\mathrm{b}\}$		$\{\mathrm{a}\}$	\emptyset	$\{\mathrm{a}, \mathrm{b}\}$
\varnothing	$\{\mathrm{a}\}$		$\{\mathrm{b}\}$	$\{\mathrm{a}, \mathrm{b}\}$	\varnothing

I. $(\mathrm{p}(\mathrm{A}), \Delta)$ is a comm. group

1) Δ is closed, since $\forall\{a\},\{b\} \in p(A) \rightarrow\{a\} \Delta\{b\}=\{a, b\} \in p(A)$
2) Δ is asso.
3) \varnothing is an identity
4) $\varnothing^{-1}=\emptyset,\{a\}^{-1}=\{a\},\{b\}^{-1}=\{b\},\{a, b\}^{-1}=\{a, b\}$
5) Δ is comm.
$\therefore(\mathrm{p}(\mathrm{A}), \Delta)$ is a comm. group
II. $(\mathrm{p}(\mathrm{A}), \cap)$ is a semi group

\cap	$\{a\}$	$\{b\}$	$\{a, b\}$	\emptyset
$\{a\}$	$\{a\}$	\emptyset	$\{a\}$	\emptyset
$\{b\}$				
$\{a, b\}$				
\emptyset				

III. \cap is distributive over Δ.

1) $\{a\} \cap(\{b\} \Delta\{a, b\})=(\{a\} \cap\{b\}) \quad \Delta(\{a\} \cap\{a, b\}) \quad[$ left dist.

Law]
2) $(\{\mathrm{b}\} \Delta\{\mathrm{a}, \mathrm{b}\}) \cap\{\mathrm{a}\}=(\{\mathrm{b}\} \cap\{\mathrm{a}\}) \Delta(\{\mathrm{a}, \mathrm{b}\} \cap\{\mathrm{a}\})[$ right dist.

Law]
$\forall\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\} \in \mathrm{p}(\mathrm{A})$
$\therefore(\mathrm{p}(\mathrm{A}), \Delta, \cap)$ is a ring.

