University of Al-Hamdaniya, College of Education
 Department of Mathematics RING THEORY
 Level Three
 Asst. Lecturer. Hadil Hazim Sami

LECTURE NO. 4

Definition: Let $(R,+,$.$) be a ring, an element a \in R$ is called zero divisor if $a \neq 0$ and there exists $\quad b \neq 0 ; b \in R$ such that $a \cdot b=0$.

Example (1): $\left(\mathrm{Z}_{8},+_{8},{ }_{8}\right)$ is a ring, zero divisors are $\{2,4,6\}$.

	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7
2	2	4	6	0	2	4	6
3	3	6	1	4	7	2	5
4	4	0	4	0	4	0	4
5	5	2	7	4	1	6	3
6	6	4	2	0	6	4	2
7	7	6	5	4	3	2	1

Example (2): $\left(Z_{3},+_{3}, ._{3}\right)$ has no zero divisors.

\cdot	1	2
1	1	2
2	2	1

Note: $\left(Z_{p},+_{p},{ }_{p}\right)$, if p is a prime number then there is no zero divisors

Remark: : Let $(R,+,$.$) be a commutative ring with identity 1$, if $a \in R$ and $a \neq 0$, a is an invertible element then a is not zero divisor.

That is a is invertible element implies a is not zero divisor.
Proof: if $a \in R, a \neq 0$ and a is an invertible element.

$$
\therefore \exists \mathrm{a}^{-1} \in \text { R s.t. } \mathrm{a}^{-1} \cdot \mathrm{a}=\mathrm{a} \cdot \mathrm{a}^{-1}=1
$$

Suppose a is a zero divisor. Then $\exists b \in R, b \neq 0$ s.t. $a . b=0$

$$
\begin{aligned}
& a^{-1} \cdot(a \cdot b)=a^{-1} \cdot 0 \\
\rightarrow & \left(a^{-1} \cdot a\right) \cdot b=0 \\
\rightarrow & 1 \cdot b=0 \quad \rightarrow b=0 \quad C!(\text { since } b \neq 0)
\end{aligned}
$$

$\therefore \mathrm{a}$ is not zero divisor.

Definition: Cancellation Law
Let R be a ring and $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{R}, \mathrm{a} \neq 0$ and $\mathrm{a} . \mathrm{b}=\mathrm{a}$. c implies $\mathrm{b}=\mathrm{c}$.
Theorem(1): let (R,+,.) be a commutative ring without zero divisors iff the cancellation law holds for multiplication.
Proof: we assume that R is without zero divisors, and let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ $\in R$ s.t. $a \neq 0$

$$
\begin{aligned}
& \rightarrow \mathrm{a} \cdot \mathrm{~b}=\mathrm{a} \cdot \mathrm{c} \\
& \rightarrow \mathrm{a} \cdot \mathrm{~b}-\mathrm{a} \cdot \mathrm{c}=0 \\
& \rightarrow \mathrm{a}(\mathrm{~b}-\mathrm{c})=0
\end{aligned}
$$

$\because \mathrm{a} \neq 0$ and R without zero divisors

$$
\begin{aligned}
& \rightarrow \mathrm{b}-\mathrm{c}=0 \\
& \rightarrow \mathrm{~b}=\mathrm{c}
\end{aligned}
$$

\therefore the cancellation law holds.

conversely

Suppose that the cancellation law holds and let $\mathrm{a}, \mathrm{b} \in \mathrm{R}$ s.t.
a. $b=0$ and let $a \neq 0$ then
$\mathrm{a} . \mathrm{b}=0 \rightarrow \mathrm{a} . \mathrm{b}=\mathrm{a} .0$

$$
\rightarrow \mathrm{b}=0
$$

Now if $b \neq 0$ then $\mathrm{ab}=0$
$\rightarrow \mathrm{a} . \mathrm{b}=0 . \mathrm{b}$
$\rightarrow \mathrm{a}=0$
$\therefore(\mathrm{R},+,$.$) is without zero divisors.$

