

University of Al-Hamdaniya, College of Education Department of Mathematics RING THEORY Level Three Asst. Lecturer. Hadil Hazim Sami

LECTURE NO. 4

Definition: Let (R,+,.) be a ring, an element $a \in R$ is called zero divisor if $a \neq 0$

and there exists $b \neq 0$; $b \in R$ such that a.b = 0.

Example (1): $(\mathbb{Z}_8, +_8, ._8)$ is a ring, zero divisors are $\{2,4,6\}$.

	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7
2	2	4	6	0	2	4	6
3	3	6	1	4	7	2	5
4	4	0	4	0	4	0	4
5	5	2	7	4	1	6	3
6	6	4	2	0	6	4	2
7	7	6	5	4	3	2	1

Example (2): $(Z_3, +_3, ._3)$ has no zero divisors.

	1	2
1	1	2
2	2	1

<u>Note</u>: $(Z_p, +_p, ._p)$, if p is a prime number then there is no zero divisors

<u>**Remark**</u>: : Let (R,+,.) be a commutative ring with identity 1, if $a \in R$ and $a\neq 0$, a is an invertible element then a is not zero divisor.

That is a is invertible element implies a is not zero divisor.

Proof: if $a \in R$, $a \neq 0$ and a is an invertible element.

 $\therefore \exists a^{-1} \in \mathbb{R} \text{ s.t. } a^{-1} a = a a^{-1} = 1$

Suppose a is a zero divisor. Then $\exists b \in R, b \neq 0$ s.t. $a \cdot b = 0$

 $a^{-1}.(a.b) = a^{-1}.0$ $\rightarrow (a^{-1}.a).b = 0$ $\rightarrow 1.b = 0 \rightarrow b = 0$ C! (since $b \neq 0$)

 \therefore a is not zero divisor.

Definition: Cancellation Law

Let R be a ring and a, b, $c \in R$, $a \neq 0$ and $a \cdot b = a \cdot c$ implies b = c.

<u>Theorem(1)</u>: let (R,+,.) be a commutative ring without zero divisors iff the cancellation law holds for multiplication. <u>Proof</u>: we assume that R is without zero divisors, and let a, b, c $\in \mathbb{R}$ s.t. a $\neq 0$

> $\rightarrow a.b = a.c$ $\rightarrow a.b - a.c = 0$ $\rightarrow a(b - c) = 0$

 \therefore a \neq 0 and R without zero divisors

$$b - c = 0 b = c$$

 \therefore the cancellation law holds.

<u>conversely</u>

Suppose that the cancellation law holds and let $a, b \in R$ s.t.

a.b = 0 and let $a \neq 0$ then

 $a.b = 0 \rightarrow a.b = a.0$

$$\rightarrow$$
 b = 0

Now if $b \neq 0$ then ab = 0

 \rightarrow a.b = 0.b

 $\rightarrow a = 0$

 \therefore (R,+,.) is without zero divisors.