

University of Al-Hamdaniya, College of Education Department of Mathematics RING THEORY Level Three Asst. Lecturer. Hadil Hazim Sami

LECTURE NO. 5

<u>Corollary</u>: suppose that R be a ring with identity 1 and has no zero divisors then $a^2 = a \rightarrow a = 0$ or a = 1

<u>Proof</u>: $a^2 = a$

$$\rightarrow a^2 - a = 0$$

a(a - 1) = 0 [since R has no zero divisors] $\rightarrow a = 0$ or a - 1 = 0 $\rightarrow a = 1$

 $\therefore a = 0$ or a = 1.

Definition: An integral domain is a comm. ring with identity without zero divisor.

Example1: (Z,+,.), (R,+,.), (Q,+,.), (C,+,.) are integral domain.

Example2: (Zn,+n,.n)

If $n = prime \implies ID$

If $n = Not prime \implies not ID$

H.W. Is (Ze,+e,.e) an integral domain?

Subring

<u>Definition1</u>: let (R,+,.) be a ring, let $\emptyset \neq S \subseteq R$ then S is called a subring of R iff (S,+,.) is a ring.

<u>Definition2</u>: Let (R,+,.) be a ring and let $\emptyset \neq S \subseteq R$ then (S,+,.) is a subring of (R,+,.) iff:

1) a $- b \in S \forall a, b \in S$.

2) $a.b \in S \forall a, b \in S$.

<u>Note</u>: Every ring $(R, *, _o)$ has two trivial subring $(\{e\}, *, _o)$ and $(R, *, _o)$.

Example: In the ring of integers (Z,+,.) the triple (Ze,+,.) is a subring of Z. while (Zo,+,.) is not subring of Z. a

Q/Let S = {a + b
$$\sqrt{3}$$
 : a, b \in Z} show that (S,+,.) subring of (R,+,.).

<u>Sol</u>/Let $a_1 + b_1\sqrt{3}$, $a_2 + b_2\sqrt{3} \in S$

1)
$$(a_1+b_1\sqrt{3}) - (a_2+b_2\sqrt{3}) = (a_1-a_2) + (b_1-b_2)\sqrt{3} \in S$$

2) $(a_1+b_1\sqrt{3}) \cdot (a_2+b_2\sqrt{3}) = a_1a_2 + a_1b_2\sqrt{3} + b_1\sqrt{3}a_2 + 3b_1b_2$

 \therefore S is a subring of (R,+,.).

Q2/(Z6,+,.) is a ring , and subring of (Z6,+,.) are : S1= $\{0\}$ S2= $\{Z6\}$ S3= $\{0,2,4\}$ S4= $\{0,3\}$ **<u>Remark:</u>** Let R be a ring and S be a subring of R.

- 1) If R is a comm. then S is a comm.
- 2) If S is comm. then is not necessary that R is comm.
- 3) If R has identity, then it is not necessary that S has identity.
- 4) If may that R, S have the same identity.
- 5) If may be that R, S have distinct identity.