# University of Al-Hamdaniya, College of Education <br> Department of Mathematics RING THEORY <br> Level Three <br> Asst. Lecturer. Hadil Hazim Sami 

## LECTURE NO. 5

Corollary: suppose that R be a ring with identity 1 and has no zero divisors then $\mathrm{a}^{2}=\mathrm{a} \rightarrow \mathrm{a}=0$ or $\mathrm{a}=1$

Proof: $a^{2}=a$

$$
\begin{gathered}
\rightarrow a^{2}-a=0 \\
a(a-1)=0 \text { [since } R \text { has no zero divisors] } \\
\rightarrow a=0 \text { or } a-1=0 \\
\\
\rightarrow a=1
\end{gathered}
$$

$\therefore \mathrm{a}=0 \quad$ or $\mathrm{a}=1$.

Definition: An integral domain is a comm. ring with identity without zero divisor.

Example1: $(\mathrm{Z},+,),.(\mathrm{R},+,),.(\mathrm{Q},+,),.(\mathrm{C},+,$.$) are integral domain.$
Example2: ( $\mathrm{Zn},+\mathrm{n}, \mathrm{n}$ )
If $\mathrm{n}=$ prime $\quad \Rightarrow \quad$ ID
If $\mathrm{n}=$ Not prime $\quad \Rightarrow \quad$ not ID
H.W. Is (Ze,+e,.e) an integral domain?

## Subring

Definition1: let ( $R,+,$. ) be a ring, let $\varnothing \neq S \subseteq R$ then $S$ is called a subring of R iff $(\mathrm{S},+,$.$) is a ring.$

Definition2: Let $(\mathrm{R},+,$.$) be a ring and let \emptyset \neq \mathrm{S} \subseteq \mathrm{R}$ then $(\mathrm{S},+,$.$) is a subring$ of (R,+,.) iff:

1) $a-b \in S \forall a, b \in S$.
2) $a . b \in S \quad \forall a, b \in S$.

Note: Every ring $\left(\mathrm{R},{ }^{*},{ }_{o}\right)$ has two trivial subring $\left(\{\mathrm{e}\},{ }^{*}{ }_{\mathrm{o}}\right)$ and $\left(\mathrm{R},{ }^{*},{ }_{o}\right)$.
Example: In the ring of integers $(\mathrm{Z},+,$.$) the triple (\mathrm{Ze},+,$.$) is a subring of \mathrm{Z}$. while (Zo,+,.) is not subring of Z . a
$\mathbf{Q} /$ Let $S=\{a+b \sqrt{3}: a, b \in Z\}$ show that $(S,+,$.$) subring of (R,+,$.$) .$
Sol/ Let $a_{1}+b_{1} \sqrt{3}, a_{2}+b_{2} \sqrt{3} \in S$

1) $\left(a_{1}+b_{1} \sqrt{3}\right)-\left(a_{2}+b_{2} \sqrt{3}\right)=\left(a_{1}-a_{2}\right)+\left(b_{1}-b_{2}\right) \sqrt{3} \in S$
2) $\left(a_{1}+b_{1} \sqrt{3}\right) \cdot\left(a_{2}+b_{2} \sqrt{3}\right)=a_{1} a_{2}+a_{1} b_{2} \sqrt{3}+b_{1} \sqrt{3} a_{2}+3 b_{1} b_{2}$
$\therefore \mathrm{S}$ is a subring of ( $\mathrm{R},+$, .).

## Q2/ (Z6,+,.) is a ring , and subring of (Z6,+,.) are :

S1 $=\{0\}$
S2 $=\{Z 6\}$
S3 $=\{0,2,4\}$
S4 $=\{0,3\}$

Remark: Let R be a ring and S be a subring of R .

1) If $R$ is a comm. then $S$ is a comm.
2) If $S$ is comm. then is not necessary that $R$ is comm.
3) If $R$ has identity, then it is not necessary that $S$ has identity.
4) If may that $R, S$ have the same identity .
5) If may be that $R, S$ have distinct identity.
