University of Al-Hamdaniya, College of Education
 Department of Mathematics RING THEORY
 Level Three
 Asst. Lecturer. Hadil Hazim Sami

LECTURE NO. 7

Problems

Q1/ Define two binary operations * and ${ }_{\circ}$ on the set Z of integers as follows:

$$
\begin{gathered}
a * b=a+b-1 \\
a_{o} b=a+b-a b
\end{gathered}
$$

prove that the system $\left(\mathrm{Z}, *,{ }_{o}\right)$ is comm. ring with identity?

Q2/ Let ($\mathrm{R},+$) comm. group. Determine whether ($\mathrm{R},+$.) forms a ring with multiplication defined as:

$$
\forall a, b \in R
$$

1) $a \cdot b=a$
sol: 1) $\forall a, b \in R \rightarrow a . b=a \in R$
\therefore is a closed
2) $\forall a, b, c \in R \rightarrow a$.(b.c) $=(a . b) . c$
L.S) $a . b=a$
R.S) a.c=a
\therefore.is asso.
3) $\forall a, b, c \in R$ then
a. $(b+c)=(a . b)+(a . c)$
L.S) $a .(b+c)=a$
R.S)(a.b) $+(a . c)=$

$$
a+a=2 a
$$

L.S \neq R.S then . is not distributive over + .
$\therefore(\mathrm{R},+$.) is not a ring
2)a.b=0 (H.W)

Q3/ Suppose that (R,+.) be a ring then $a .0=0 . a=0 \quad \forall a \in R$.

proof: since $a .0=a .(0+0)$

$$
=a .0+a .0
$$

Hence $0+a .0=a .0+a .0$ by cancellation law get the result.

$$
\text { a. } 0=0
$$

Similarly we can proof 0. $a=0$

Q4/ Let R be a ring with identity 1 , has more than one element then $0 \neq 1$.
Proof: since $R \neq\{0\}$ then there exist $a \in R$ such that $a \neq 0$
Let $1=0$
$\Rightarrow \mathrm{a}=\mathrm{a} .1=\mathrm{a} .0=0$
$\Rightarrow \mathrm{a}=0$ contodiction
Then $0 \neq 1$

Q5/Prove that a ring ($\mathrm{R},+$.) is commutative iff $(a+b)^{2}=a^{2}+2 a b+b^{2}$
Proof: Let $(a+b)^{2}=a^{2}+2 a b+b^{2}$
$\Rightarrow a^{2}+a b+b a+b^{2}=a^{2}+2 a b+b^{2}$
$\Rightarrow a^{2}+a b+b a+b^{2}=a^{2}+a b+a b+b^{2}$ (by cancellation law)
$\Rightarrow \mathrm{ab}=\mathrm{ba}$
\therefore A ring ($\mathrm{R},+$.) is commutative.
Conversely: Let ($R,+$.) is commutative then $a b=b a$
Now $(a+b)^{2}=a^{2}+a b+b a+b^{2}$

$$
\begin{gathered}
=a^{2}+a b+a b+b^{2} \quad(\text { since } a b=b a) \\
=a^{2}+2 a b+b^{2}
\end{gathered}
$$

