

University of Al-Hamdaniya, College of Education Department of Mathematics RING THEORY Level Three Asst. Lecturer. Hadil Hazim Sami

LECTURE NO. 7

Problems

Q1/ Define two binary operations * and $_{o}$ on the set Z of integers as follows:

$$a * b = a + b - 1$$
$$a_{o} b = a + b - ab$$

prove that the system $(Z, *, _o)$ is comm. ring with identity?

Q2/Let (R,+) comm. group. Determine whether (R,+.) forms a ring with multiplication defined as:

 $\forall a, b \in R$

1) a. b = a
sol: 1) ∀ a,b∈R → a.b=a∈R
∴ .is a closed
2) ∀ a,b,c∈R→a.(b.c)=(a.b).c

L.S) a.b=a

R.S) a.c=a

∴ is asso.

- 3) \forall a,b,c \in R then
- a.(b+c)=(a.b)+(a.c)

L.S) a.(b+c)=a

R.S)(a.b)+(a.c)=
 a + a=2a
L.S≠R.S then . is not distributive over +.
∴(R,+.) is not a ring

2)a.b=0 (H.W)

Q3/ Suppose that (R,+.) be a ring then $a.0 = 0.a = 0 \quad \forall a \in R$.

proof: since $a \cdot 0 = a \cdot (0 + 0)$

$$= a.0 + a.0$$

Hence 0 + a. 0 = a. 0 + a. 0 by cancellation law get the result.

a. 0 = 0

Similarly we can proof 0.a = 0

Q4/ Let R be a ring with identity 1, has more than one element then $0 \neq 1$. Proof: since R \neq {0} then there exist a \in R such that a \neq 0 Let 1=0

- \Rightarrow a = a. 1 = a. 0 = 0
- \Rightarrow a = 0 contodiction
- Then $0 \neq 1$

Q5/Prove that a ring (R,+.) is commutative iff $(a + b)^2 = a^2 + 2ab + b^2$ Proof: Let $(a + b)^2 = a^2 + 2ab + b^2$ $\Rightarrow a^2 + ab + ba + b^2 = a^2 + 2ab + b^2$ $\Rightarrow a^2 + ab + ba + b^2 = a^2 + ab + ab + b^2$ (by cancellation law) $\Rightarrow ab=ba$

 \therefore A ring (R,+.) is commutative.

Conversely: Let (R,+.) is commutative then ab=ba

Now $(a + b)^2 = a^2 + ab + ba + b^2$

$$= a2 + ab + ab + b2 (since ab = ba)$$
$$= a2 + 2ab + b2$$