

University of Al-Hamdaniya, College of Education Department of Mathematics RING THEORY Level Three Asst. Lecturer. Hadil Hazim Sami

LECTURE NO. 8

Problems

<u>Definition</u>: An element a of a ring (R,+.) said to be nilpotent if $a^n=0$ for some $n \in Z^+$

Example1: $(Z_8,+,.)$ is a ring

 $2^{3}=0$, $4^{2}=0$, $0^{0}=0$, $6^{3}=0$

 \therefore nilpotent element in Z₈ are {0,2,4,6}

Example2: $(Z_6,+,.)$ is a ring , find the nilpotent in Z_6 .

Sol.: nilpotent in Z_6 is only zero.

Q7/ Prove that in an integral domain the zero element is the only nilpotent element.

Proof: Let $a \in R$ such that $a^n=0$ & assume $a \neq 0$ we must prove that a=0

Now $a^n = 0 \rightarrow a. a^{n-1} = 0$ Since $a \neq 0 \rightarrow a^{n-1} = 0$ $\rightarrow a. a^{n-2} = 0$, $a \neq 0$ $\rightarrow a^{n-2} = 0$ \vdots $\rightarrow a^2 = 0 \rightarrow a. a = 0 \rightarrow a = 0$ C! \therefore In an integral domain the zero element is

the only nilpotent elements.

<u>**Definition :**</u> let (R,+,.) be a ring then the center of a ring (R,+,.) denoted by cent (R) is defined as:

cent (R) = {c \in R: cx = xc \forall x \in R}

Q8/ prove that (cent (R) ,+,.) is a subring of (R ,+,.).

Proof: 1)cent (R) $\neq \emptyset$ since $\in cent (R)$

```
2) let a, b \in cent(R), that is

ax = xa \quad \forall x \in R

bx = xb

(a - b)x = ax - bx

xa - xb = x(a - b)

\therefore a - b \in cent(R)
```

3) (ab)x = a(bx) = a(xb) = (ax)b = (xa)b = x(ab) ∴ a, b ∈ cent (R) ∴ cent (R) is a subring of R.