

University of Al-Hamdaniya, College of Education Department of Mathematics RING THEORY Level Three Asst. Lecturer. Hadil Hazim Sami

LECTURE NO. 9

Ideals

Definition: Let (R, +, .) be a ring and $\emptyset \neq I \subseteq R$ then (I, +, .) is an ideal of (R, +, .) iff:

- 1. $a-b\in I \forall a,b\in I$
- 2. $ar \in I$ and $ra \in I \forall r \in R, a \in I$

Definition: a ring which contains no ideals except the trivial ideals is said to be a simple.

Example: $(Z_7,+,.)$ is a ring and is a simple.

<u>Note</u> every ideal is a subring but converse is not true.

Example1: (Z,+,.) is a ring, $(Z_e,+,.)$ is an ideal of (Z,+,.) and is a subring of (Z,+,.).

Example2: (Z,+,.) is a subring of (R,+,.) but it is not ideal of (R,+,.). Since

$$5 \in Z \text{ and } \frac{1}{3} \in R \rightarrow 5.\frac{1}{3} \notin Z$$

<u>**Theorem3:**</u> let I be a proper ideal of a ring (R,+,.) with identity then no element of I has a multiplicative inverse.

proof: Let $0 \neq a \in I$ and suppose that $a^{-1} \in I$ then $aa^{-1} = 1 \in I$ Now $\forall r \in R, r = 1.r \in I$

 $\Rightarrow R \subseteq I, :: I \subseteq R \Rightarrow R=I C!$

Example (1): $(Z_8, +_8, ._8)$ is a ring, I={0,2,4,6} is an ideal of Z_8

	2	4	6
2	4	0	4
4	0	0	0
6	4	0	4

<u>Theorem4</u> : If I_1 and I_2 are two ideals of a ring R, then $I_1 \cap I_2$ is also an ideal of R.

<u>Proof</u>: 1) $I_1 \cap I_2 \neq \emptyset$ (since $0 \in I_1 \cap I_2$) 2)let a, b $\in I_1 \cap I_2 \Rightarrow$ a, b $\in I_1$ a, b $\in I_2$ \therefore I_1 is an ideal of $R \Rightarrow a - b \in I_1$ \therefore I_2 is an ideal of $R \Rightarrow a - b \in I_2$

 $\therefore a - b \in I_1 \cap I_2$

3) $\forall r \in R$, $a \in I_1 \cap I_2 \Rightarrow a \in I_1$ and $a \in I_2$

- $: I_1$ is an ideal of $R \Rightarrow a.r$, $r.a \in I_1$
- $:: I_2$ is an ideal of $R \Rightarrow a.r$, r.a $\in I_2$
- $\therefore a.r \in I_1 \cap I_2 \& r.a \in I_1 \cap I_2$

 \therefore I₁ \cap I₂ is an ideal of R.

Example 1: let $(Z_6,+,.)$ is a ring , $I_1 = \{0,2,4\}, I_2 = \{0,3\}, I_1 \& I_2$ are ideals of Z_6 then

 $I_1 \cap I_2 = \{0\}$ is also ideal of Z_6 . $I_1 \cup I_2 = \{0, 2, 3, 4\}$ is not ideals of Z_6 . **Example 2**: let $(Z_{18},+,.)$ is a ring then $I_1 = \{0, 2, 4, 6, 8, 10, 12, 14, 16\}$ $I_2 = \{0,3,6,9,12,15\}$ $I_3 = \{0, 6, 12\}$ $I_4 = \{0, , 9\}$ $I_1 \cap I_2 = I_3$ $I_1 \cap I_3 = I_3$ $I_2 \cap I_4 = I_4$ $I_3 \cap I_4 = \{0\}$ \therefore If (I_i, +,) are ideals of (R,+,.) \therefore (\cap I_i, +, .) is also an ideal of R.