University of Al-Hamdaniya, College of Education
 Department of Mathematics RING THEORY
 Level Three
 Asst. Lecturer. Hadil Hazim Sami

LECTURE NO. 9

Ideals

Definition: Let $(\mathrm{R},+,$.$) be a ring and \emptyset \neq \mathrm{I} \subseteq \mathrm{R}$ then $(\mathrm{I},+,$.$) is an ideal of$ ($\mathrm{R},+,$.) iff:

1. $\mathrm{a}-\mathrm{b} \in \mathrm{I} \forall \mathrm{a}, \mathrm{b} \in \mathrm{I}$
2. $\quad a r \in I$ and $r a \in I \forall r \in R, a \in I$

Example: $\left(\mathrm{Z}_{12},+,.\right)$ is a ring, ideals of $\left(\mathrm{Z}_{12},+,.\right)$ are

$$
\left.\mathrm{I}_{1}=\{0\}, \mathrm{I}_{2}=\left(\mathrm{Z}_{12},+, .\right)\right\} \text { trivial ideals }
$$

$$
I_{3}=\{0,2,4,6,8,10\}
$$

$$
\mathrm{I}_{4}=\{0,3,6,9\}
$$

$$
\mathrm{I}_{5}=\{0,4,8\},
$$

$$
I_{6}=\{0,6\} .
$$

Definition: a ring which contains no ideals except the trivial ideals is said to be a simple.

Example: $\left(\mathrm{Z}_{7},+,.\right)$ is a ring and is a simple.

Note every ideal is a subring but converse is not true.

Example1: $(\mathrm{Z},+,$.$) is a ring , \left(\mathrm{Z}_{\mathrm{e}},+,.\right)$ is an ideal of $(\mathrm{Z},+,$.$) and is a subring of (\mathrm{Z},+,$.$) .$

Example2: $(\mathrm{Z},+,$.$) is a subring of (\mathrm{R},+,$.$) but it is not ideal of (\mathrm{R},+,$.$) . Since$
$5 \in Z$ and $\frac{1}{3} \in R \rightarrow 5 . \frac{1}{3} \notin Z$

Theorem3: let I be a proper ideal of a ring ($\mathrm{R},+,$.) with identity then no element of I has a multiplicative inverse.
proof: Let $0 \neq a \in I$ and suppose that $a^{-1} \in I$ then $a a^{-1}=1 \in I$
Now $\forall r \in R, r=1 . r \in I$
$\Rightarrow \mathrm{R} \subseteq \mathrm{I}, \because \mathrm{I} \subseteq \mathrm{R} \Rightarrow \mathrm{R}=\mathrm{I} \mathrm{C}!$

Example (1): $\left(Z_{8},+_{8},{ }_{8}\right)$ is a ring, $\mathrm{I}=\{0,2,4,6\}$ is an ideal of Z_{8}

\cdot	2	4	6
2	4	0	4
4	0	0	0
6	4	0	4

Theorem4 : If I_{1} and I_{2} are two ideals of a ring R, then $I_{1} \cap I_{2}$ is also an ideal of R.

Proof: 1) $I_{1} \cap I_{2} \neq \emptyset\left(\right.$ since $\left.0 \in I_{1} \cap I_{2}\right)$
2)let $a, b \in I_{1} \cap I_{2} \Rightarrow a, b \in I_{1} a, b \in I_{2}$
$\because \mathrm{I}_{1}$ is an ideal of $\mathrm{R} \Rightarrow \mathrm{a}-\mathrm{b} \in \mathrm{I}_{1}$
$\because \mathrm{I}_{2}$ is an ideal of $\mathrm{R} \Rightarrow \mathrm{a}-\mathrm{b} \in \mathrm{I}_{2}$

$$
\therefore \mathrm{a}-\mathrm{b} \in \mathrm{I}_{1} \cap \mathrm{I}_{2}
$$

3) $\forall r \in R, a \in I_{1} \cap I_{2} \Rightarrow a \in I_{1}$ and $a \in I_{2}$
$\because \mathrm{I}_{1}$ is an ideal of $\mathrm{R} \Rightarrow$ a.r , r.a $\in \mathrm{I}_{1}$
$\because \mathrm{I}_{2}$ is an ideal of $\mathrm{R} \Rightarrow$ a.r , r.a $\in \mathrm{I}_{2}$
\therefore a.r $\in \mathrm{I}_{1} \cap \mathrm{I}_{2} \& r . a \in \mathrm{I}_{1} \cap \mathrm{I}_{2}$
$\therefore \mathrm{I}_{1} \cap \mathrm{I}_{2}$ is an ideal of R .

Example 1: let $\left(\mathrm{Z}_{6},+,.\right)$ is a ring $, \mathrm{I}_{1}=\{0,2,4\}, \mathrm{I}_{2}=\{0,3\}$,
$\mathrm{I}_{1} \& \mathrm{I}_{2}$ are ideals of Z_{6} then
$I_{1} \cap I_{2}=\{0\}$ is also ideal of Z_{6}.
$I_{1} \cup I_{2}=\{0,2,3,4\}$ is not ideals of Z_{6}.

Example 2: let $\left(\mathrm{Z}_{18},+,.\right)$ is a ring then

$$
\begin{gathered}
\mathrm{I}_{1}=\{0,2,4,6,8,10,12,14,16\} \\
\mathrm{I}_{2}=\{0,3,6,9,12,15\} \\
\mathrm{I}_{3}=\{0,6,12\} \\
\mathrm{I}_{4}=\{0,, 9\} \\
\mathrm{I}_{1} \cap \mathrm{I}_{2}=\mathrm{I}_{3} \\
\mathrm{I}_{1} \cap \mathrm{I}_{3}=\mathrm{I}_{3} \\
\mathrm{I}_{2} \cap \mathrm{I}_{4}=\mathrm{I}_{4} \\
\mathrm{I}_{3} \cap \mathrm{I}_{4}=\{0\}
\end{gathered}
$$

\therefore If $\left(\mathrm{I}_{\mathrm{i}},+,\right)$ are ideals of $(\mathrm{R},+,$.
$\therefore\left(\cap \mathrm{I}_{\mathrm{i}},+,.\right)$ is also an ideal of R .

