

المحاضرة الحادية عشر

The Cauchy – Riemann Equations

مدرس المادة: د.حكمت شريف مصطفى

Cauchy-Riemann Equations

▶ Theorem 1 :- Necessary conditions for a function f(z) to be analytic. If f(z) = u(x, y) + i v(x, y) is analytic at z_0 , then u and v satisfy the Cauchy-Riemann equations,

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \ i.e. u_x = v_y$$
$$\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y} \ i.e. v_x = -u_y$$

at every point in some neighbourhood of point z_0 provided u_x , u_y , $v_x \& v_y$ exists.

Cauchy-Riemann Equations

- ▶ Theorem 2: Sufficient condition for f(z) to be analytic, If
- 1) f(z) = u(x, y) + i v(x, y) is defined at every point in some neighbourhood of point z_0 .
- 2) u and v satisfy CR equations $u_x = v_y$, $v_x = -u_y$ at every point in some neighbourhood of point z_0 .
- 3) u, v, u_x, u_y, v_x, v_y are continuous at every point in some neighbourhood of point z_0 .

Then the function f(z) is analytic at $z_0 \& f'(z) = u_x + iv_x$

Applying the Cauchy - Riemann Conditions

Example 1

$$u(x,y) \quad v(x,y)$$

$$f(z) = z = (x+iy) = x + i \quad y$$

$$\frac{\partial u}{\partial x} = 1 = \frac{\partial v}{\partial y} \quad \Rightarrow \text{ C.R. conditions hold everywhere (for z finite)}$$

$$\Rightarrow z \text{ is analytic everywhere}$$

Example 2:

$$f(z) = z^* = (x + iy)^* = x + i (-y)$$

$$\frac{\partial u}{\partial x} = 1 \neq \frac{\partial v}{\partial y} = -1$$

$$\Rightarrow C.R. conditions hold nowhere$$

$$\frac{\partial u}{\partial y} = 0 = -\frac{\partial v}{\partial x}$$

$$\Rightarrow z^* \text{ is analytic nowhere}$$

Applying the Cauchy - Riemann Conditions (cont.)

Example 3:

$$f(z) = \frac{1}{z} = \frac{1}{x+iy} = \frac{x-iy}{x^2+y^2}$$

$$= \underbrace{\frac{x}{x^2+y^2} + i\left(\frac{-y}{x^2+y^2}\right)}_{u(x,y)}$$

$$\frac{\partial u}{\partial x} = \underbrace{\frac{x^2+y^2-2x^2}{(x^2+y^2)^2}}_{(x^2+y^2)^2} = \underbrace{\frac{\partial v}{\partial y}}_{=} = \underbrace{\frac{-x^2-y^2+2y^2}{(x^2+y^2)^2}}_{=} \checkmark$$

 $\frac{1}{z}$ is analytic except at z = 0

$$\Rightarrow D: |z| > 0$$

$$\frac{\partial u}{\partial y} = \frac{-2xy}{\left(x^2 + y^2\right)^2} = -\frac{\partial v}{\partial x} \implies \text{C.R. conditions hold everywhere except } x = y = 0 \ (z = 0).$$

f(z) is analytic everywhere except at z=0. The point z=0 is called a "singularity."

A singularity is a point where the function is <u>not</u> analytic.

Check each function for analyticity by using the Cauchy-Riemann equations.

(a)
$$f(z) = |z|^2$$

(b)
$$g(z) = e^z$$

(c)
$$h(z) = \text{Im}(z^2)$$

(a)
$$f(z) = |z|^2 = x^2 + y^2$$
.

Hence,
$$u = x^2 + y^2$$
 and $v = 0$. Now $u_x = 2x \neq 0 = v_y$

Cauchy-Riemann equations fail. The function is **not analytic**.

Cauchy-Riemann Equations

Polar form :- variables r and θ

$$\begin{split} \frac{\partial u}{\partial r} &= \frac{1}{r} \frac{\partial v}{\partial \theta} \ i.e. \, u_r = \frac{1}{r} v_\theta \\ \frac{\partial u}{\partial \theta} &= \frac{\partial v}{\partial r} \ i.e. \frac{-1}{r} u_\theta = v_r \end{split}$$

$$f'(z) = (u_r + i \ v_r)e^{-i\theta}$$

END