DERIVATIVES OF COMPLEX FUNCTIONS

Derivative

Definition The derivative of a complex function f at a point z_{0} is written $f^{\prime}\left(z_{0}\right)$ and is defined by

$$
f^{\prime}\left(z_{0}\right)=\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z}
$$

provided this limit exists. Then f is said to be differentiable at z_{0}. If we write $\Delta z=z-z_{0}$, we have $z=z_{0}+\Delta z$ and (4) takes the form

$$
f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} .
$$

EXAMPLE Differentiability. Derivative

The function $f(z)=z^{2}$ is differentiable for all z and has the derivative $f^{\prime}(z)=2 z$ because

$$
f^{\prime}(z)=\lim _{\Delta z \rightarrow 0} \frac{(z+\Delta z)^{2}-z^{2}}{\Delta z}=\lim _{\Delta z \rightarrow 0} \frac{z^{2}+2 z \Delta z+(\Delta z)^{2}-z^{2}}{\Delta z}=\lim _{\Delta z \rightarrow 0}(2 z+\Delta z)=2 z .
$$

Some Exercises

Show that

1) $f(z)=\bar{z}$ is nowwhere differentiable.
2) $g(z)=z^{n}$ has derivative $n z^{n-1}$
3) $h(z)=e^{z}$ has derivative e^{z}
4) $l(z)=|z|^{2}$ is nowhere differentiable except $z=0$
5) Every real-valued function of complex variable is either non-differentiable or differentiable with derivative equal to 0 .

solution

1) We study the limit for two different paths of the point, so if the first approach to the point is z0 along the line parallel to the real axis then $z=x+i y_{0^{\prime}}$, and therefore is

$$
\begin{aligned}
\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} & =\lim _{\left(x+i y_{0}\right) \rightarrow\left(x_{0}+i y_{0}\right)} \frac{f\left(x+i y_{0}\right)-f\left(x_{0}+i y_{0}\right)}{\left(x+i y_{0}\right)-\left(x_{0}+i y_{0}\right)} \\
& =\lim _{\left(x+i y_{0}\right) \rightarrow\left(x_{0}+i y_{0}\right)} \frac{\left(x-i y_{0}\right)-\left(x_{0}-i y_{0}\right)}{\left(x-x_{0}\right)+i\left(y_{0}-y_{0}\right)} \\
& =\lim _{\left(x+i y_{0}\right) \rightarrow\left(x_{0}+i y_{0}\right)} \frac{x-x_{0}}{x-x_{0}}=1
\end{aligned}
$$

as for if the approach to the point $z 0$ along the line parallel to the imaginary axis y then $z=x_{0}+i y$

$$
\begin{aligned}
& \lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}=\lim _{\left(x+i y_{0}\right) \rightarrow\left(x_{0}+i y_{0}\right)} \frac{f\left(x_{0}+i y\right)-f\left(x_{0}+i y_{0}\right)}{\left(x_{0}+i y\right)-\left(x_{0}+i y_{0}\right)} \\
& =\lim _{\left(x+i y_{0}\right) \rightarrow\left(x_{0}+i y_{0}\right)} \frac{\left(x_{0}-i y\right)-\left(x_{0}-i y_{0}\right)}{\left(x_{0}-x_{0}\right)+i\left(y-y_{0}\right)} \\
& =\lim _{\left(x+i y_{0}\right) \rightarrow\left(x_{0}+i y_{0}\right)} \frac{-i\left(y-y_{0}\right)}{i\left(y-y_{0}\right)}=-1
\end{aligned}
$$

From above, we find that

$$
f(z)=\bar{z} \quad \text { Is a non-differentiable. }
$$

2) $g(z)=z^{n}$ has derivative $n z^{n-1}$.

$$
\begin{aligned}
& \left(z^{n}\right)^{\prime}=\lim _{h \rightarrow 0} \frac{(z+h)^{n}-z^{n}}{h}=\lim _{h \rightarrow 0} \frac{z^{n}+n h z^{n-1}+h^{2}(\ldots)-z^{n}}{h} \\
& =\lim _{h \rightarrow 0} \frac{n h z^{n-1}+h^{2}(\ldots)}{h}=\lim _{h \rightarrow 0}\left(n z^{n-1}+h(\ldots)\right)=n z^{n-1}
\end{aligned}
$$

- Properties of Derivatives

$$
\begin{aligned}
& (f \pm g)^{\prime}\left(z_{0}\right)=f^{\prime}\left(z_{0}\right) \pm g^{\prime}\left(z_{0}\right) \\
& (c f)^{\prime}\left(z_{0}\right)=c f^{\prime}\left(z_{0}\right) \text { for any constant } c .
\end{aligned}
$$

$$
(f g)^{\prime}\left(z_{0}\right)=f\left(z_{0}\right) g^{\prime}\left(z_{0}\right)+f^{\prime}\left(z_{0}\right) g\left(z_{0}\right)
$$

$$
\left(\frac{f}{g}\right)^{\prime}\left(z_{0}\right)=\frac{g\left(z_{0}\right) f^{\prime}\left(z_{0}\right)-f\left(z_{0}\right) g^{\prime}\left(z_{0}\right)}{\left[g\left(z_{0}\right)\right]^{2}} \text {, if } g\left(z_{0}\right) \neq 0 \text {. }
$$

$$
\frac{d}{d z} f\left[g\left(z_{0}\right)\right]=f^{\prime}\left[g\left(z_{0}\right)\right] g^{\prime}\left(z_{0}\right) \text { Chain Rule. }
$$

