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Gauss's Law: 

Gauss's law is one of the fundamental laws of electromagnetism and it states that the total 

electric flux through a closed surface is equal to the total charge enclosed by the surface. 

 

 
 

Fig 3: Gauss's Law 

Let us consider a point charge Q located in an isotropic homogeneous medium of dielectric 

constant . The flux density at a distance r on a surface enclosing the charge is given by 

 

If we consider an elementary area ds, the amount of flux passing through the elementary area is 

given by 

 

 

 
But , is the elementary solid angle subtended by the area at the location of Q. 

Therefore we can write  

For a closed surface enclosing the charge, we can write   

which can seen to be same as what we have stated in the definition of Gauss's Law. 
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This equation is called the 1st Maxwell's equation of electrostatics. 

 

 
Application of Gauss's Law: 

 
Gauss's law is particularly useful in computing     or    where the charge distribution has some 

symmetry. We shall illustrate the application of Gauss's Law with some examples. 

1.    due to an infinite line charge 

As the first example of illustration of use of Gauss's law, let consider the problem of 

determination of the electric field produced by an infinite line charge of density LC/m. Let us 

consider a line charge positioned along the z-axis as shown in Fig. 4(a)  . Since the line charge is 

assumed to be infinitely long, the electric field will be of the form as shown in Fig. 4(b)   

If we consider a close cylindrical surface as shown in Fig. 2.4(a), using Gauss's theorm we can 

write, 

Considering the fact that the unit normal vector to areas S1 and S3 are perpendicular to the 

electric field, the surface integrals for the top and bottom surfaces evaluates to zero. Hence we 
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Can write, 
 

 

 

 

Fig 4: Infinite Line Charge 
 

2. Infinite Sheet of Charge 

As a second example of application of Gauss's theorem, we consider an infinite charged sheet 

 

covering the x-z plane as shown in figure 5. Assuming a surface charge density of   for the 

infinite surface charge, if we consider a cylindrical volume having sides    placed symmetrically 

as shown in figure 5, we can write: 



Chapter two                                                                                                                          Electrostatics two      

5 

 

 

 

 
 

Fig 5: Infinite Sheet of Charge 

 
 

It may be noted that the electric field strength is independent of distance. This is true for the 

infinite plane of charge; electric lines of force on either side of the charge will be perpendicular 

to the sheet and extend to infinity as parallel lines. As number of lines of force per unit area gives 

the strength of the field, the field becomes independent of distance. For a finite charge sheet, the 

field will be a function of distance. 

 
3. Uniformly Charged Sphere 

Let us consider a sphere of radius r0 having a uniform volume charge density of rv C/m3. To 

determine everywhere, inside   and outside the sphere,   we construct Gaussian surfaces of 

radius r < r0 and r > r0 as shown in Fig. 6 (a) and Fig. 6(b). 

For the region ; the total enclosed charge will be 
 

 

 

                                                                Fig 6: Uniformly Charged Sphere 
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By applying Gauss's theorem, 
 

Therefore 

 

 
For the region ; the total enclosed charge will be 

 

By applying Gauss's theorem, 

 

 
Electric Potential / Electrostatic Potential (V): 

If a charge is placed in the vicinity of another charge (or in the field of another charge), it 

experiences a force. If a field being acted on by a force is moved from one point to another, then 

work is either said to be done on the system or by the system. 

 
Say a point charge Q is moved from point A to point B in an electric field E, then the 

work done in moving the point charge is given as: 

WA→B = - ∫AB (F . dl) = - Q ∫AB(E . dl) 

 

where the   –   sign indicates that the work is done on the system by an external agent. 
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The work done per unit charge in moving a test charge from point A to point B is the 

electrostatic potential difference between the two points(VAB). 

VAB = WA→B / Q 
 

- ∫AB(E . dl) 

 

- ∫InitialFinal (E . dl) 

If the potential difference is positive, there is a gain in potential energy in the movement, 

external agent performs the work against the field. If the sign of the potential difference is 

negative, work is done by the field. 

 

The electrostatic field is conservative i.e. the value of the line integral depends only on 

end points and is independent of the path taken. 
 

 
- Since the electrostatic field is conservative, the electric potential can also be written as: 

 

𝐵 

𝑉𝐴𝐵  = − ∫  ̅𝐸 . �̅�𝑙 
𝐴 

 

𝑝0 

𝑉𝐴𝐵 = −∫ 
𝐴 

𝐵 

𝐵 

̅𝐸 . �̅�𝑙 − ∫  ̅𝐸 . �̅�𝑙 
𝑝0 

𝐴 

𝑉𝐴𝐵  = − ∫  ̅𝐸 . �̅�𝑙 +  ∫  ̅𝐸 . �̅�𝑙 
𝑝0 𝑝0 

 
𝑉𝐴𝐵 = 𝑉𝐵 − 𝑉𝐴 
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Thus the potential difference between two points in an electrostatic field is a scalar field that 

is defined at every point in space and is independent of the path taken. 

 

- The work done in moving a point charge from point A to point B can be written as: 

WA→B = - Q [VB  – VA] =  −𝑄 ∫
𝐵 
�̅� . �̅�𝑙 
𝐴 

- Consider a point charge Q at origin O. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Now if a unit test charge is moved from point A to Point B, then the potential difference between 

them is given as: 
 

 
- Electrostatic potential or Scalar Electric potential (V) at any point P is given by: 

 
 

𝑃 

𝑉 = − ∫  �̅� . �̅�𝑙 
𝑃0 
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The reference point Po is where the potential is zero (analogues to ground in a circuit). 

The reference is often taken to be at infinity so that the potential of a point in space is 

defined as 

𝑃 

𝑉 = − ∫  �̅� . �̅�𝑙 
∞ 

 

Basically potential is considered to be zero at infinity. Thus potential at any point ( rB = r) due 

to a point charge Q can be written as the amount of work done in bringing a unit positive 

charge frominfinity to that point (i.e. rA → ∞) 

 
Electric potential (V) at point r due to a point charge Q located at a point with position vector 

r1 is given as: 
 

Similarly for N point charges Q1, Q2 ….Qn located at points with position vectors r1, 

r2, r3…..rn, theelectric potential (V) at point r is given as: 
 

 
The charge element dQ and the total charge due to different charge distribution is given as: 

 
dQ = ρldl → Q = ∫L (ρldl) → (Line Charge) 

 

dQ = ρsds → Q = ∫S (ρsds) → (Surface Charge) 

 
dQ = ρvdv → Q = ∫V (ρvdv) → (Volume Charge) 
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Second Maxwell’s Equation of Electrostatics: 

The work done per unit charge in moving a test charge from point A to point B is the 

electrostatic potential difference between the two points(VAB). 

VAB = VB – VA 

Similarly, 

VBA = VA – VB 

 
Hence it‘s clear that potential difference is independent of the path taken. Therefore 

VAB = - VBA 

 
VAB+ VBA = 0 

 

∫AB (E . dl) + [ - ∫BA (E . dl) ] = 0 
 
 

 
The above equation is called the second Maxwell‘s Equation of Electrostatics in integral form.. 

The above equation shows that the line integral of Electric field intensity (E) along a closed path 

is equal to zero. 

In simple words―No work is done in moving a charge along a closed path in an electrostatic 

field. 

Applying Stokes‘ Theorem to the above Equation, we have: 
 

If the Curl of any vector field is equal to zero, then such a vector field is called an Irrotational or 

Conservative Field. Hence an electrostatic field is also called a conservative field. 
The above equation is called the second Maxwell‘s Equation of Electrostatics in differential 
form. 
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Relationship Between Electric Field Intensity (E) and Electric Potential (V): 

Since Electric potential is a scalar quantity, hence dV (as a function of x, y and z variables) can 

be written as: 
 

Hence the Electric field intensity (E) is the negative gradient of Electric potential (V). 
The negative sign shows that E is directed from higher to lower values of V i.e. E is opposite to 

the direction in which V increases. 
 

Work Done To Assemble Charges: 

 
In case, if we wish to assemble a number of charges in an empty system, work is required to do 

so. Also electrostatic energy is said to be stored in such a collection. 
 

Let us build up a system in which we position three point charges Q1, Q2 and Q3 at position r1, r2 

and r3 respectively in an initially empty system. 

Consider a point charge Q1 transferred from infinity to position r1 in the system. It takes no 

work to bring the first charge from infinity since there is no electric field to fight against (as the 

system is empty i.e. charge free). 

Hence, W1 = 0 J 

 
Now bring in another point charge Q2 from infinity to position r2 in the system. In this case we 

have to do work against the electric field generated by the first charge Q1. 

Hence, W2 = Q2 V21 

 

Where:  V21 is the electrostatic potential at point r2 due to Q1. 

 
 

- Work done W2 is also given as: 
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Now bring in another point charge Q3 from infinity to position r3 in the system. In this case 

we have to do work against the electric field generated by Q1 and Q2. 

 
Hence, W3 = Q3 V31 + Q3 V32 = Q3 ( V31 + V32 ) 

 

where   V31 and V32 are electrostatic potential at point r3 due to Q1 and Q2 respectively. 

 
 

The work done is simply the sum of the work done against the electric field generated by 

point charge Q1 and Q2 taken in isolation: 

 
 

 

- Thus the total work done in assembling the three charges is given as: 

WE = W1 + W2 + W3 

0 + Q2 V21 + Q3 ( V31 + V32 ) 

 

 
Also total work done ( WE ) is given as: 

 

 

If the charges were positioned in reverse order, then the total work done in assembling them 

is given as: 

WE = W3 + W2+ W1 

= 0 + Q2V23 + Q3( V12+ V13) 
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Where V23 is the electrostatic potential at point r2 due to Q3 and V12 and V13 are electrostatic 

potential at point r1 due to Q2 and Q3 respectively. 

 

- Adding the above two equations we have, 

 

2WE = Q1 (V12 + V13) + Q2 (V21 + V23) + Q3 (V31 + V32) 

= Q1 V1 + Q2 V2 + Q3 V3 

 

 

Hence 

WE =1 / 2 [Q1V1 + Q2V2 + Q3V3] 

 

 

where V1, V2 and V3 are total potentials at position r1, r2 and r3 respectively. 

 
 

- The result can be generalized for N point charges as: 
 

 

The above equation has three interpretation: This equation represents the potential energy of the 

system.This is the work done in bringing the static charges from infinity and assembling them in 

the required system. This is the kinetic energy which would be released if the system gets 

dissolved i.e. the charges returns back to infinity. 

In place of point charge, if the system has continuous charge distribution ( line, surface or 

volume charge), then the total work done in assembling them is given as: 
 

 



Chapter two                                                                                                                          Electrostatics two      

14 

 

 

Since ρv = ∇ . D and E = - ∇ V, 
 

Substituting the values in the above equation, work done in assembling a volume charge 

distribution in terms of electric field and flux density is given as: 
 

The above equation tells us that the potential energy of a continuous charge distribution 

is stored in an electric field. 

 

The electrostatic energy density wE is defined as: 
 

 

Properties of Materials and Steady Electric Current: 

Electric field can not only exist in free space and vacuum but also in any material medium. When 

an electric field is applied to the material, the material will modify the electric field either by 

strengthening it or weakening it, depending on what kind of material it is. 

Materials are classified into 3 groups based on conductivity / electrical property: 

 

 Conductors (Metals like Copper, Aluminum, etc.) have high conductivity (σ >> 1). 

 Insulators / Dielectric (Vacuum, Glass, Rubber, etc.) have low conductivity (σ << 1). 

 Semiconductors (Silicon, Germanium, etc.) have intermediate conductivity. 

Conductivity (σ) is a measure of the ability of the material to conduct electricity. It is 
the reciprocal of resistivity (ρ). Units of conductivity are Siemens/meter and mho. 

 
The basic difference between a conductor and an insulator lies in the amount of free electrons 

available for conduction of current. Conductors have a large amount of free electrons where as 

insulators have only a few number ofelectrons for conduction of current. Most of the conductors 

obey ohm‘s law. Such conductors are also called ohmic conductors. 

Due to the movement of free charges, several types of electric current can be caused. 

The different types of electric current are: 
 

 Conduction Current. 

 Convection Current. 

 Displacement Current. 
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Electric current: 

 
Electric current (I) defines the rate at which the net charge passes through a wire of 

cross sectional surface area S. 

Mathematically, 

 
If a net charge ΔQ moves across surface S in some small amount of time Δt, electric current(I) 

is defined as: 

 

 
How fast or how speed the charges will move depends on the nature of the material medium. 

 

Current density: 

 
Current density (J) is defined as current ΔI flowing through surface ΔS. 

 

Imagine surface area ΔS inside a conductor at right angles to the flow of current. As the 

area approaches zero, the current density at a point is defined as: 
 
 

 

The above equation is applicable only when current density (J) is normal to the surface. 

In case if current density(J) is not perpendicular to the surface, consider a small area ds of 

the conductor at an angle θ to the flow of current as shown: 
 

 

 

In this case current flowing through the area is given as: 

dI = J dS cosθ = J . dS and 𝐼 = ∫ 𝐽̅.̅ ̅𝑑̅�̅�̅ 
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Where angle θ is the angle between the normal to the area and direction of the current. 

From the above equation it‘s clear that electric current is a scalar quantity. 

CONVECTION CURRENT DENSITY: 

Convection current occurs in insulators or dielectrics such as liquid, vacuum and rarified gas. 

Convection current results from motion of electrons or ions in an insulating medium. Since 

convection current doesn‘t involve conductors, hence it does not satisfy ohm‘s law. Consider a 

filament where there is a flow of charge ρv at a velocity u = uy ay. 
 

 

 

 
- Hence the current is given as: 
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Where uy is the velocity of the moving electron or ion and ρv is the free volume charge density. 
 

- Hence the convection current density in general is given as: 

J = ρv u 
 

Conduction Current Density: 

Conduction current occurs in conductors where there are a large number of free electrons. 

Conduction current occurs due to the drift motion of electrons (charge carriers). Conduction 
current obeys ohm‘s law. 

When an external electric field is applied to a metallic conductor, conduction current 

occurs due to the drift of electrons. 

The charge inside the conductor experiences a force due to the electric field and hence should 

accelerate but due to continuous collision with atomic lattice, their velocity is reduced. The net 

effect is that the electrons moves or drifts with an average velocity called the drift 

velocity (υd) which is proportional to the applied electric field (E). 

 
 

Hence according to Newton‘s law, if an electron with a mass m is moving in an electric 

field E with anaverage drift velocity υd, the the average change in momentum of the free 

electron must be equal to the applied force (F = - e E). 
 

 

 

The drift velocity per unit applied electric field is called the mobility of electrons (μe). 

υd = - μe E 

where μe is defined as: 
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Consider a conducting wire in which charges subjected to an electric field are moving with 

drift velocity υd. 

Say there are Ne free electrons per cubic meter of conductor, then the free volume 

charge density(ρv)within the wire is 

ρv= - e Ne 

The charge ΔQ is given as: 

ΔQ = ρv ΔV = - e Ne ΔS Δl = - e Ne ΔS υd Δt 
 

- The incremental current is thus given as: 
 

 

 

 
The conduction current density is thus defined as: 

 

where σ is the conductivity of the material. 

 
The above equation is known as the Ohm‘s law in point form and is valid at every point 

in space. 

In a semiconductor, current flow is due to the movement of both electrons and 

holes, hence conductivity is given as: 

σ = ( Ne μe + Nh μh )e 
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DIELECTRC CONSTANT: 

It is also known as Relative permittivity. 

If two charges q 1 and q 2 are separated from each other by a small distance r. Then by 

using the coulombs law of forces the equation formed will be 
 

 

In the above equation   is the electrical permittivity or you can say it, Dielectric constant. 

If we repeat the above case with only one change i.e. only change in the separation 

medium between the charges. Here some material medium must be used. Then the 

equation formed will be. 
 

Now after division of above two equations 
 
 

In the above figure 

is the Relative Permittivity. Again one thing to notice is that the dielectric constant is 

represented by the symbol (K) but permittivity by the symbol  
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CONTINUITY EQUATION: 

The continuity equation is derived from two of Maxwell's equations. It states that the 

divergence of the current density is equal to the negative rate of change of the chargedensity, 
 

Derivation 

One of Maxwell's equations, Ampère's law, states that 
 

Taking the divergence of both sides results in 
 

but the divergence of a curl is zero, so that 
 

Another one of Maxwell's equations, Gauss's law, states that 
 

Substitute this into equation (1) to obtain 
 

which is the continuity equation. 
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LAPLACE'S AND POISSON'S EQUATIONS: 

 
A useful approach to the calculation of electric potentials is to relate that potential to the 

charge density which gives rise to it. The electric field is related to the charge density by the 

divergence relationship 
 

and the electric field is related to the electric potential by a gradient relationship 
 

Therefore the potential is related to the charge density by Poisson's equation 
 

In a charge-free region of space, this becomes LaPlace's equation 
 

This mathematical operation, the divergence of the gradient of a function, is called the 

LaPlacian. Expressing the LaPlacian in different coordinate systems to take advantage of the 

symmetry of a charge distribution helps in the solution for the electric potential V. For example, 

if the charge distribution has spherical symmetry, you use the LaPlacian in spherical polar 

coordinates. 

Since the potential is a scalar function, this approach has advantages over trying to calculate the 

electric field directly. Once the potential has been calculated, the electric field can be computed 

by taking the gradient of the potential. 
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Polarization of Dielectric: 

If a material contains polar molecules, they will generally be in random orientations when 

no electric field is applied. An applied electric field will polarize the material by orienting 

the dipole moments of polar molecules. 

 

 
This decreases the effective electric 

field between the plates and will 

increase the capacitance of the parallel 

plate structure. The dielectric must be 

a good electric insulator so as to 

minimize any DC leakage current 

through a capacitor. 

 

 

 

 

 

 
 

The presence of the dielectric decreases the electric field produced by a given charge density. 
 

The factor k by which the effective field is decreased by the polarization of the 

dielectric is called the dielectric constant of the material. 
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Solved problems: 
 

Problem1: 
 

Problem-2 

 
Problem-3 
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