Chapter Two: Rectilinear Motion of a Particle - ohlad dlilSia

2.1 Newton's Laws of Motion
Newton's Laws of Motion are as follows:
1. Everybody continues in its state of rest or of uniform motion in a straight
line, unless 1t 1s compelled by a force to change that state.
2. The change of motion is proportional to the applied force and takes place in
the direction of the force.
3.To every action, there is always an equal and opposite reaction or the

mutual actions of two bodies are always equal and oppositely directed.
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2.2 Newton's First Law: Inertial Reference Systems
The first law describes a common property of matter, namely, inertia.

Inertia 1s the resistance of all matter to having its motion changed
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2.3 Mass and Force: Newton's Second and Third Law
Consider two masses m;and m, attached by a spring and they initially were at

rest. If the two masses were pushed together, compressing the spring and then

releasing them, so that they fly apart attaining speeds v;and v, respectively.
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The ratio of the two masses:

ma

V1

mq 2

Eqn. (1) 1s equivalent to:
A(myv,) = —A(m,v,) ... (2)

because the initial velocities of each mass are zero and the final velocities v
and v, are in opposite directions. If we divide by At and take limits as At — 0

obtain:

d 5 d o
L omai) = = L0ny5) o (3)
The product of mass and velocity, mv, is called linear momentum.
So the second law can be rephrased as follows: The time rate of change of an

object's linear momentum is proportional to the impressed force, F. Thus, the

second law can be written as:
il sk W Aol B Gyt Juals e 3l
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F <« —(mv)
dt
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E= k& (mv)
where k 1s a constant of proportionality. Let k = 1
= d R
= (mv)

where m constant, finally express Newton's second law in the familiar form:

=2 dv -
F=m—=ma e (4)

F: is the net force acting upon the mass m; that is, it 1s the vector sum of all of

the individual forces acting upon m.
From Eqn. (3)

ﬁl ==l s (5) Newton's third law

Two interacting bodies exert equal and opposite force upon one another.
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2.4 Linear Momentum
P=mv ... (1)

=~ dp
F‘E ...... (2)

Sub Eqn. (2) in third Newton’s law ﬁl = —14:2

dP; _ dP,

dt dt

dP, = dP, d 7 e
—+—=0 or —(P,+P,)=0
dt ' dt dt( 1 2)

~ P41+ P, = constant (conservation of linear momentum)

~ Newton's third law implies that the total momentum of two mutually

interacting bodies 1s a constant.
The equation of motion for a particle subject to the influence of a net force, F,
writing as the vector sum of all the forces acting on the particle.

fe 5 F—m 2 =
=XF=m—=ma

Example:
A spaceship of mass M i1s traveling in deep space with mitial velocity

(v; = 20 km/s) relative to the sun. It ejects a rear stage of mass (0.2 M) with
speed (u = 5 km/s), find the final velocity ﬁf of the space ship after ejection.

Solution:
The system of spaceship plus rear stage is a closed system upon which no

external forces act; the total linear momentum 1s conserved.
AP=P;—P,=0 Ao Gl Glie pllad g il dla sl () dilal eliadl) A ol
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ot Pf = PI ...... (1) U vf
.
P; = initial linear momentum R e ™
€[>
L= L~

ﬁf = final linear momentum
Let U be the velocity of the rear stage after ejection.
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The total momentum of the system after ejection is then:

P = 0.2M U + 0.8 My .....(3) Juaii) any lsill I o) o3 50
i=v—U
U= —ti .o (4)
Sub. Eqn. (4) in Eqn. (3)
P =02M(v; — ) + 08 MVy ... (5)

Eqn. (5) equal Eqn.(2), so:
[0.2M(v; —u) + 08 MV =M v; |+ M
0.2vf + 0.8v; = v; + 0.2u

B = b, +0.21
= 20km/s + 0.2(5 km/s)
v =21 km/s
2.5 Rectilinear Motion

When a moving particle remains on a single straight line, the motion is said to

be “rectilinear *“. The general equation motion is:

- ) . S 3 JE) cas) g aniliee ol 41 2 acall yatig Ladie

F(x,x,t) =mX =ma - ’ e ﬁ"j‘ubj

Note: We usually use the single variable x to represent the position of a particle.
To avoid unnecessary use of subscripts, we often use the symbols

v,a,x, X and F respectively, rather than v,, a,, x,, X, and F,.

Special Cases:

1. Constant Force

F = constant then a = constant

= dv dv F -

~F=m——>—=—=a=constant ... ... (1)
dt dt m

mX = ma

a - dv -

F=x=—=qa
dt

dv = adt
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v—vy,=at v, = Initial velocity

X t
fxo dx = [ (at + v,) dt
% — % =%at2 + vt
x=§at2+v0t+x0 ...... (3)

at = v — v

v =da () 4 (22)
2a (x — x,) = a? (v_:.z)Z + 2v,(v — v,)

2a (x — xy) = v? + v¢ — 2vvy + 2V, — 20§

Za (x—uxp) =v* —vF )

The equations of uniformly accelerated motion

2. Free Fall
In the case of a body falling freely near the surface of the Earth, neglecting

air resistance, the acceleration 1s very nearly constant
m

a=g=98— =32 ft [sec? b e b Le sl all bl Al d
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Example:

A block 1s sliding down on a smooth plane inclined at angle @ to horizontal. If
the height of the plane 1s h as shown in the figure and the block is released from
rest (v, = 0) at the top, what will be its speed when it reaches the bottom?

Then how the accelerate will become when surface 1s not smooth?

/.
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Solution:

a)Smooth plane (No Frictional force)

"ﬁ‘(‘ )
mgsin6

=mgsinf I
a=gsiné ..... (1) mgcos®
h
X — 0 — Gaa ™ (2)

Using one of the equation of motion (2a (x — x,) = (v? — v¥))

where vy, =0

= 2(gsin9)( L )

sin 6
~v? =2gh
v =,/2gh

b) Rough Plane (Frictional force)

F=mgsinf—f.... (5)
faN
f =uN

Sk
/ mgsinf

¥ 8

mgcosf

N: normal force, u: coetficient of sliding or kinetic friction
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From figure:

F = ma = mgsinf — umg cos 6

a=g (sinf — pcosb)

For motion up the plane, the direction of the frictional force is reversed; that is,

it 1s 1n the positive x direction. The acceleration (actually deceleration) is then:
a = g(sinf + pcosh)
Ua  adll 8) & Ll Can gall olai¥) 3 0S5 (o) SlIaY) 3 8 olal (€ 2y cdand] o) 3S pall
(Sl s

2.6 Forces that Depend on Position ) ) ) ]
4Kl 23l 5 A0S jall Z3lall a seaa

(The Concepts of Kinetic and Potential Energy)

. s Jhsa Clanall 2 wis e
e Force depends only on the particles position sunll g g o 2aiat
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e Electrostatic and gravitational forces.

e Forces of elastic tension or compression.

If the force 1s independent of velocity or time, then the differential equation for
rectilinear motion 1s simply:
F(x)=m& ... (1)

Using the chain rule

_di_d;&dx_dxda&

X = s o
dt dt dx dt dx
dv
F=v— .. (2)
Sub. Eqn. (2) in Eqn. (1)
dv
-.F(x)—mva ...... (3)
Also, Eqn.(3) may be written as:
) . E d(v2)
F(x) T2 dx
= dr
Fx)=— ... (4)
where [T = % mvz] — Kinetic energy of the particle
F(x)dx = dT
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r
[ F()dx = [ dT =T, =Ty =W ......(5)
The work 1s equal to the change in the kinetic energy of the particle.

Let us define a function V(x) such that aaall A€ ) T 3 el (g by Jal
av
f;: F(x) dx = —V + constant ... ... (6)

V: Potential energy.
The function V(x) is called the potential energy in terms of (x), the work
integral 1s

W= fx’:f(x)dx =— fx’:dv= V) +V(x)=T—-T,

—V 4+ costant =T
T +V = costant

-i- mv? +V(x) = costant = E ....(7) Total energy equation

Total energy (total mechanical energy) it is equal to the sum of the kinetic and
potential energies and is constant throughout the motion of the particle.

Such force (depend on position only) called Conservative force.
Nonconservative forces that is, those for which no potential energy function
exists are usually of a dissipational nature, such as friction.

(Free Fall) (Constant acceleration) 1s an example of conservative motion.

. .
Emv2+V(x)=E (s g gall e 2ata) 558l 028 ) Lapall 38 a JIsh cud
1 ; o cAbiladl e el S0 Losale Albladl bl e )
SV =E—=V () - ¢ Ll 088 ¢ dlS i dlls L aa g Y L ol
UZ=E[E—V(.?C)] s (@l asad) all il U\ug;@ﬁ&;'ﬁ\dlnmgaﬁ\
m Alsiladl) A< al e Jis

sv=4 \/i [E-V(x)] ...... (8) Equation of velocity as a function of (x)
- dx — 12
b= s +\/;[E V()]
dt = F—=
2 [E-v(x)]
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X +dx

i — . (9) Equation of time (t) as a function of (x)
Je }%[E—V(x)]

Note that:
1. When V(x) < E - The velocity (v) is real
2.When V (x) = E — The velocity (v) =0
This means that the particle must come to rest and reverse its motion at
points for which the equality holds. These points are called the turning
points of the motion.

3.When V(x) = E — The velocity (v) is imaginary

e ll KN GBI 2 jle 51 JB) V() 08 Al 2 diis (V) Aol S0 o
OF i anall () iy 138 5 KN 28U 2 slie V() 0S8 Al 3 aall & 5lie de Hull S5 @
Al f gl Il s LG 038 aniiy et 3 shunall Jan Jalii Nie 436 jm Sy 5 iy
] I G0 4y s V() 08 s 2 A 48 3 e yull S o
Example: (Free Fall)
A body is projected upward in the positive x-direction with initial speed (v).
choosing x = 0 as mitial point of projection , find the maximum height attained

by the body and then find the equation of time (t) in terms of (g)

Solution:

Choose the x direction to be positive upward, and then the gravitational force 1s

equal to (—mg). Atx =0 % =y
= U i (1) Atx = max X =?
B = _av(x)
dx
v [Flx)dx=-V+c ... (2)
Sub Eqn. (1) in Eqn. (2)
v [—mgdx=-V+c choosec =0
—mgx = —V+i¢ thenV =0 at x =10

Sub Eqn. (3) in Eqn. (4)

9
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s = %mv2 Fmgr s (5)
The body be projected upward with initial speed v from the origin x = 0
E = %mvg + mg(0)
sE=mvf ... (6)
Energy equation during body motion
: % g = —i—mvz +mgx ... (7)

2

VA= e — 2P e s (B

The turning point of the motion, which is in this case the maximum height
(X = Xinax) > 18 given by setting v = 0.

g lai ) il vie Allall oda 8 055 AS all 3 g sa ) Al
0=U§—2ngax

1 2 _
E mv, = mngax

2
= :—; —The maximum height that the body attamned

Xmax

To obtain #time (t) from Eqn. (8)

vii=vs—2gx

o= (%)2 =vg ~Jgx

dx2 2
Fre it 2gx
dx?
2
dt =
0 =gx

dt? = (v — 2gx)~tdx?
dt = (v — 2gx)~Y?dx

By integration two side:
t x -
Jydt = [ (w§ —2gx)"1/* dx

X

_ 2wE-2g0)Y2 T (wi-2g0)Y/2 | v,
f=— = — +
29 5 g g
= Vo _ Wi-2g0)'/2
g g

10
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2.7 Variation of Gravity with Height

We assumed that g was constant. Actually, the force of gravity between two
particles 1s inversely proportional to the square of the distance between them
(Newton's law of gravity). The gravitational force that the Earth exerts on a
body of mass m 1s given by: s Bl i ] el Bl g ) 1
Alall sl () 518) Lagiy dilisal) g je ga LS (il
T ... (1) (s

Where G': 1s Newton's constant of gravitation
M: 1s the mass of the Earth
r: 1s the distance from the center of the Earth to the body.

We know that there is a relation between the force and potential energy:

F=—Z—: 59V =—Fdr »dV = —Fdr —F

[av =—[ -2 ar

2

V(r) = GMm ("_21“)

Vir) = —me ......... ) Potential Energy function

If we neglect air resistance, the differential equation of motion is:

i M ; B .
mi = —G— ... (3) ¢ sel) daslia Jaal s 3

i dr dr
= *

dt dr
.. _drdr _ drdr

Fad— =
dt dr dr dt

Integrating both side with respect 7 and r
. s dar
m [ 7di = —GMm [ =
m [7dir = —GMm [r~2 dr

11
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1 i GcMm  _ —
Emrz = —— 241 = GMmr—1 + ¢
1 . GMm
-mi* =—+c¢
2 r
1. GMm
Emrz =—b il s (5)
r

¢ = E 1s constant of integration.

1 ., GMm
.'.Em‘r —_ =

E .. . (6) Free Falling Energy equation

r

Eqn. (6) is energy equation, represent the sum of the kinetic energy (1° term)

and the potential energy (2™ term) remain constant throughout the motion of a
Jalling body. (U 2a1) L€ 5l G § pana Bty B Allaa Jif (6) iy Ak
L) w38 g BS a5 S () aall) ZualSH G
When the projectile shot upward from the surface of the earth with initial
speed v:
w2 —
S mvg - E.... (7)

Where r, 1s the radius of the earth

Now, in order to find the speed of the projectile at any height x above the
earth’s surface, combining the last two energy equations (6) and (7):

(7) 5 (6) A8Uall 5 2N cpililaall pasni (Nl (358 x $ L) (ol 3 Al A ju 2la Y (oY)

1 ., GMm _1__ 5 GMm / 3
~mr? — =-mv§ — |
2 r 2 Te X
1 1 ., GMm GMm | >r =1 +x
Emvg - Emrz + - =0 e

r Te
1 . 1 1
Em(vg —7%) + GMm(-——) =0

e

Substituting by (v = 7°), then multiply the Eqn. by (i), we get:

W§ —v?) +26M ;=) =0
v2=v3+26M(1-2)

Te

Butr=r,+x

12
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1 1
w2 =v:+2GM ( ) w.er . (8) Speed at any height above the earth surface

Tetx Te

Now the equation of gravity acceleration for the projectile on the earth’s surface

1s given: (gravitational force equal to weight of body)

_szm = —myg chu Glo daill 1pilall Jiaad dolee slac) Ay oY)
eGM (el ()5 (6 sbudt Andlall 5 8) oaLy)
— r_2 ...... (9)
c=2 ... (10)
Sub. Eqn. (10) in Eqn. (8)
2 _ .2 2Mgré( 1 1
vt =" T M (re+x ?‘e)
G S 2 (Te—(re+x)
V- =" * 2gre (re(re+x) )

v: =vi + 2gr? (—re_ re_x)

Te(Te+x)

. 2 —X
E="To T Zgre (rg(rg+x))

v* = N 2‘9 (re(re+x))

v =vf -2 (%)
SORNE S

A vg =201 ri)_i.....(l 1) Speed of projectile with variant gravity acceleration

When x L re — ( ) can be neglected, then Eqn. (11) reduces to the form:

Te

— .. (12) Speed of projectile with uniform gravitational field

The maximum height (turning point) 1s found by setting v = 0 and solving for x
20 =v¢ —29%ar(1+ x—m“x)‘l

v{) - zgxmax(l + xmax) !

Te

13
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v2 x
Xmax = i (1 + %)

2 2
— Y0 4 Yo Xmax

Xmax = 29 29 T
x _ Y6 Xmax — vg
max zg Te Zg
2 2
a0 . FO
xmax(l Zgre) Zg
v2 w2 \7! . . ..
Xmax =5, (1 T ) .....(13)  Maximum height of the projectile
e
2
Again, if v < 2gr, — ;‘; can be neglected
e
2
Xmaxe = N = :—; eoveeei(14) Maximum height of the projectile with low initial speed

To find v, that make the projectile escape from the earth’s gravity, which is
called escape speed, we need to expand the series in Eqn. (13), by using

binomual, as in:

) gt ey el de ju et Sl oY) Apdla e g Casdall anall Jaad I g alagY
sl daete alaaiuly «(13) adolas ad duludal) &l Kaa olayl

-y = (12 () )
2gre 2gre 2gre

Sub. n Eqn. (13)

—h=t(1-2 (4 )2_...)
xmax_h_Zg (1 Zgre+ 2gre
_pov_ ”_3)21 (ﬁ)l
xmax_h_zg (Zg re+ 29 r§+
Neglecting high terms
2
Vo
xmax:h:'zg
v: = 20h

h=Xpox =7.=6.4X10°n and g = 9.8m/s*
v, =4/2g1, =11km/s ...... (15) Escape velocity

14
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In the Earth's atmosphere, the average speed of air molecules (O, and N,) 1s
about 0.5 km/s, which 1s considerably less than the escape speed, so the Earth
retains its atmosphere. The moon, has no atmosphere; because the escape speed
at the moon's surface, owing to the moon's small mass, is considerably smaller
than that at the Earth's surface, any oxygen or nitrogen would eventually
disappear.

A5/ K05 Jsa (Ny 5 0;) ol sedl Qi ja de ju gl gl ¢ (a3 (gl DA 3
sie Gyl de ju Y m Al Gul el [ pay Y Ladiad AN Oy el Ao pu e S B
@l b cpa V) e die Qg oell Ao ju e ) jrual Gopeall el A Qg ¢l

Al 4 it s yi ol eaaS

2.8 The Force as a Function of Velocity Only
(Horizontal Motion with Liner Resistance)
It often happens that the force that acts on a body is a function of the velocity of
the body. This 1s true, for example, in the case of viscous resistance exerted on a
body moving through a fluid. If the force can be expressed as a function of v
only, the differential equation of motion may be written in either of the two
forms
o2 el Ju e cmimia 13a awal) de jul A s awal) e 3 i5all sl of Guosy L Llle
Ao yull NS 58l e el oSGl 1Y) aile e Sl paiall anall e gl da 3l A gles Alls
i b A8 el Lol Alaled) S (S ¢ Liia
dv

Fb+Fw)= m—.....(1)
F, = is constant force that dose not depend on v
mdv = F(v)dt
mdv
dt = =
By integrating both sides:

m dv
F(v)
Assuming that we can solve the above Eqn. for (v)
() = v(t)

Second integration: [ v(t)dt = x(t)

dt = [ =t - tv) ... (2)

15
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@_d_"@_vd_"
dt dxdt  dx
Sub. in Eqn. (1)

dv
F,+F(v) = mv—
mv dv
o= F(v)
X = fn?z;v =y) ... (3) Position as function of (v)

Example: (Horizontal Motion with Liner Resistance)

A block is projected with initial velocity (v,) on a smooth horizontal plane, but

it was affected by air resistance proportional of (v) i.e. F(v) = —cv. Find the

equation of time (t) as a function of (v), then find the equation of velocity and

displacement as a function of (7).

Solution:

16

By integrating both sides

[fat=—Z2 2
0 c Vo v

m m
t=——lnvlj =— ?(lnv—lnvo)

t = —?ln (Ui) ceveeee.(3) Equation of time as a function of (v)
0

Multiplying by (_ZC)

v=v,em ... 4) Velocity as a function of (1)
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dx
at
dx —et
.E—voem
x x —ct
Iy dx—fo vy em dt......(5)

x=—mv°f —emdt
me 2
X = —
c 0
v — % . +mv0 _f?go)
c
mvg .it . .
X =— (1 —em ) ....... (6) Displacement as a function of (t)
Example:
If F = —cv find the velocity and time equations as a function of displacement

for a particle with 1nitial velocity v, .

Solution:
d
F=—cv and F=mv—=
dx
dv
—CV =mv—
dx
—= Ox dx = [ dv
m Vo
——x=v—v
T 0
V=1 — ix e 1 Velocity as a function of (x)
[The speed of the body varies linearly with the displacement (distance)]
_ dx AaY) e bl el de o
Tdt ”
d v=VvVog——X
oy —<x ok
dt i dv=——dx
d m
t _rx dx “m J’ av _
fg dt fo Vo ——x E oy
m m

17
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2.9 The Force as a Function of Time Only

dv
F(t) = mg

dv =9 g¢
m

By integrating

dx = v(t)dt

[dx=[v(t)dt ......(2)
Siib Eqn. (1)in(2)

Example:
A block 1s mitially at rest on a smooth horizontal surface. At time (t = 0) a

constant increasing horizontal force is applied F = ct. Find the velocity and

displacement as a function of time.

Solution:
== m@
dt
dv = 2 ct dt
m

f
v== [ ctdt

et?

2m

18~



Chapter Two: Rectilinear Motion of a Particle ohlad dlilSia

dx
Y = —
dt
dy  of*
dt o 2m
ct?
dx = —dt
2m
t ct?
x = | —dt
02
_et?
6m

2.10 Vertical Motion in a Resisting Medium Terminal Velocity
Linear Resistance

An object falling vertically through the air or through any fluid is subject to
viscous resistance. If the resistance is proportional to the first power of (v), we
can express this force as (—cv) regardless of the sign of (v) because the
resistance 1s always opposite to the direction of motion. The constant of
proportionality ¢ depends on the size and shape of the object and the viscosity
of the fluid.

i Aa glaall ¢l 13) A 5 M) Aa jlaal wile (o DA (e sl el sl ue Lol ) T (31} aisall (i jah
sl e bl ks (—ew) S5l sds o el e (bl ALY (v) I 5V 5580 aa
Ao s )y puall J3 5 ana o ading ¢ Canliill i A4S jall oladY duSlaa Wil ()55 4 i) oY ()

&kl
Let us take the x axis to be posifive upward. The differential equation of

motion 1s then

—mg — cv = m% ...... (1) Linear Equation

J-tdt:fv mdv
0

Vo -mg—cv

t v dav _ v dv

m v —-mg—cv N J‘Vo (mg+cv)
t v dv

; - Vo mg+cv

— iln(mg +cv)] 7
C1

— i [In(mg + cv) — In(mg + v,)]

19
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at=—21In (mgHv ) ...... (2)  Equation of Time

¢ mg+cvg

Eqn. (2) represents time in term of velocity; by solve Eqn. (2)

-ct
G mg+cv
mg+cvg
Sl
mg + cv = (mg + cvy)em

—ct —ct

cv=—-mg+mgem +cvyem | +c
m m —ct —ct
LY = ——g—|——g em +vyem
¢ ¢
—ct
f) = —% + (% + vo) em ... (3) Velocity as function of time

Eqn. (3) represents velocity in term of time.

—ct

When (t > %) thenem =0 so, the exponential term can be neglected

v=-"42 . (4) Terminal velocity

{ i
Terminal velocity: 1t 1s that velocity at which the force resistance is just equal
and opposite to the weight of the body so that the total force on the body is zero
and so the acceleration 1s zero.

Cygmy asanll oy a) Baalany Lot Ay glona 5581 Ba gl L (585 o el B 2 g0l B g
i (S i) (of il il (g 5l sl e AIKH 5 Gl ()5S

m - - -
Tg =V Terminal speed creial) dc

m

T = Characteristic time s e

€

Then Eqn. (3) becomes:

v=—v;+ W +vy)e " ... (4) Velocity in term of terminal velocity

These two terms represent two velocities; the terminal velocity v, which
exponentially (fades in) and the 1nitial velocity v, which exponentially (fades

out) due to the action of the viscous drag force.

Ll ik Al py A0l de ) 5 Ll 8305 ) py giiall de e orie ju o3Way glaall ())3a
A WA il oy
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We can find displacement by integrate Eqn. (3)

.d_x__w ( ) —Ct
B o T C+ + vy

—ct

f;dx=—%f0dt+ fe dt+fvoemdt

—ct

X —xy=— m‘gt+ (C/m)fe “dt + e /m C/m)f em dt

c/m (-c/m)
__mg m2g ct-c Z vom —c¢
R O-njemdtf— emdt
mg mg =gk vom __Ctt
s e Ma
0
mg m<g i vom —=ct
x—xo=—‘:t—?z‘[em —et| -2 e — e
m m2 —ct vom { =€t
x—xo = ="ttt (em —1) =" (e —1)
m m? . vom et
x—xp ="+t (1-ew ) + 2 (1 - )
= —ct
X—%p = —Ecgt o Tr:zg + m:") (1 —em ) ....... (5) Displacement Equation

mvgp

where X, = = gt +v,7

In particular, for an object dropped from rest vy =0,
From Eqn. (4)
v=—v,+ W +vy)et" =—v, +v e t/*
e When (t =1)

v=(1-e"")y,

v=>01—-e Yy,
sWhen(t=1)->v=_0-eYvt
e Whent =27

v=_(1-e27")y,

v=(1-e"?)y,
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~when(t=21) »v=>0—-—e"?)v,

Thus, after one characteristic time the speed is (1 —e™1) times the terminal
speed, after two characteristic times it is the factor (1 — e™2) of and so on.

After an interval of the speed 1s within 1% of the terminal value, namely,
(1—e~®)v, = 0.99995 v,
e yu Gl (1 —e™1) dejudl o5S0 canly o5t e 2 (Sl e aua dasad 13 Ul

preall e pus Jaci e 5 5 % 2y 1Sa (1 — @72) e o 0585 o 51l Ga 3l (i a5 ¢ gl
(1— e=5)v, = 0.99995 v, & ¢ (oqiiall A _yus Zah o 7 1 3p0m b
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